

 Lua 5.2 Reference
Manual

 This is a beta version of Lua 5.2. Some details may
change in the final version.
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
Waldemar Celes
Copyright © 2011 Lua.org, PUC-Rio. Freely available under the terms of
the Lua license.

contents · index

1 – Introduction
Lua is an extension programming language designed to
support general procedural programming with data
description facilities. It also offers good support for object-
oriented programming, functional programming, and data-
driven programming. Lua is intended to be used as a
powerful, light-weight scripting language for any program
that needs one. Lua is implemented as a library, written in

clean C, the common subset of Standard C and C++.

Being an extension language, Lua has no notion of a "main"
program: it only works embedded in a host client, called the
embedding program or simply the host. The host program
can invoke functions to execute a piece of Lua code, can
write and read Lua variables, and can register C functions to
be called by Lua code. Through the use of C functions, Lua
can be augmented to cope with a wide range of different
domains, thus creating customized programming languages
sharing a syntactical framework. The Lua distribution
includes a sample host program called lua, which uses the
Lua library to offer a complete, standalone Lua interpreter,
for interactive or batch use.

Lua is free software, and is provided as usual with no
guarantees, as stated in its license. The implementation
described in this manual is available at Lua's official web
site, www.lua.org.

Like any other reference manual, this document is dry in
places. For a discussion of the decisions behind the design
of Lua, see the technical papers available at Lua's web site.
For a detailed introduction to programming in Lua, see
Roberto's book, Programming in Lua (second edition).

2 – Basic Concepts
This section describes some basic concepts of the language.

2.1 – Values and Types

Lua is a dynamically typed language. This means that
variables do not have types; only values do. There are no
type definitions in the language. All values carry their own
type.

All values in Lua are first-class values. This means that all
values can be stored in variables, passed as arguments to
other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, number,
string, function, userdata, thread, and table. Nil is the type of
the value nil, whose main property is to be different from any
other value; it usually represents the absence of a useful
value. Boolean is the type of the values false and true. Both
nil and false make a condition false; any other value makes
it true. Number represents real (double-precision floating-
point) numbers. Operations on numbers follow the same
rules of the underlying C implementation, which, in turn,
usually follows the IEEE 754 standard. (It is easy to build
Lua interpreters that use other internal representations for
numbers, such as single-precision floats or long integers;
see file luaconf.h.) String represents immutable sequences
of bytes. Lua is 8-bit clean: strings can contain any 8-bit
value, including embedded zeros ('\0').

Lua can call (and manipulate) functions written in Lua and
functions written in C (see §3.4.9).

The type userdata is provided to allow arbitrary C data to be
stored in Lua variables. This type corresponds to a block of
raw memory and has no pre-defined operations in Lua,
except assignment and identity test. However, by using
metatables, the programmer can define operations for
userdata values (see §2.4). Userdata values cannot be

created or modified in Lua, only through the C API. This
guarantees the integrity of data owned by the host program.

The type thread represents independent threads of
execution and it is used to implement coroutines (see §2.6).
Do not confuse Lua threads with operating-system threads.
Lua supports coroutines on all systems, even those that do
not support threads.

The type table implements associative arrays, that is, arrays
that can be indexed not only with numbers, but with any Lua
value except nil and NaN (Not a Number, a special numeric
value used to represent undefined or unrepresentable
results, such as 0/0). Tables can be heterogeneous; that is,
they can contain values of all types (except nil). Any key with
value nil is not considered part of the table. Conversely, any
key that is not part of a table has an associated value nil.

Tables are the sole data structuring mechanism in Lua; they
can be used to represent ordinary arrays, sequences,
symbol tables, sets, records, graphs, trees, etc. To represent
records, Lua uses the field name as an index. The language
supports this representation by providing a.name as syntactic
sugar for a["name"]. There are several convenient ways to
create tables in Lua (see §3.4.8).

We use the term sequence to denote a table where the set
of all positive numeric keys is equal to {1..n} for some integer
n, which is called the length of the sequence (see §3.4.6).

Like indices, the value of a table field can be of any type. In
particular, because functions are first-class values, table
fields can contain functions. Thus tables can also carry
methods (see §3.4.10).

The indexing of tables follows the definition of raw equality in
the language. The expressions a[i] and a[j] denote the
same table element if and only if i and j are raw equal (that
is, equal without metamethods).

Tables, functions, threads, and (full) userdata values are
objects: variables do not actually contain these values, only
references to them. Assignment, parameter passing, and
function returns always manipulate references to such
values; these operations do not imply any kind of copy.

The library function type returns a string describing the type
of a given value.

2.2 – Environments and the Global
Environment
As will be discussed in §3.2 and §3.3.3, any reference to a
global name var is syntactically translated to _ENV.var.
Moreover, every chunk is compiled in the scope of an
external variable called _ENV (see §3.3.2), so _ENV itself is
never a global name in a chunk.

Despite the existence of this external _ENV variable and the
translation of global names, _ENV is a completely regular
name. In particular, you can define new variables and
parameters with that name. Each reference to a global name
uses the _ENV that is visible at that point in the program,
following the usual visibility rules of Lua.

Any table used as the value of _ENV is usually called an
environment.

Lua keeps a distinguished environment called the global
environment. This value is kept at a special index in the C
registry (see §4.5). In Lua, the variable _G is initialized with
this same value.

When Lua compiles a chunk, it initializes the value of its _ENV
variable with the global environment (see load). Therefore,
by default, global variables in Lua code refer to entries in the
global environment. Moreover, all standard libraries are
loaded in the global environment, and several functions there
operate on that environment. You can use load to load a
chunk with a different environment. (In C, you have to load
the chunk and then change the value of its first upvalue.)

If you change the global environment in the registry (through
C code or the debug library), all chunks loaded after the
change will get the new environment. Previously loaded
chunks are not affected, however, as each has its own
reference to the environment in its _ENV variable. Moreover,
the variable _G (which is stored in the original global
environment) is never updated by Lua.

2.3 – Error Handling
Because Lua is an embedded extension language, all Lua
actions start from C code in the host program calling a
function from the Lua library (see lua_pcall). Whenever an
error occurs during the compilation or execution of a Lua
chunk, control returns to the host, which can take
appropriate measures (such as printing an error message).

Lua code can explicitly generate an error by calling the error
function. If you need to catch errors in Lua, you can use

pcall or xpcall to call a given function in protected mode.

Whenever there is an error, an error object (also called an
error message) is propagated with information about the
error. Lua itself only generates errors where the error object
is a string, but programs may generate errors with any value
for the error object.

When you use xpcall or lua_pcall, you may give an
message handler to be called in case of errors. This function
is called with the original error message and returns a new
error message. It is called before the error unwinds the
stack, so that it can gather more information about the error,
for instance by inspecting the stack and creating a stack
traceback. This message handler is still protected by the
protected call; so, an error inside the message handler will
call the message handler again. If this loop goes on, Lua
breaks it and returns an appropriate message.

2.4 – Metatables and Metamethods
Every value in Lua can have a metatable. This metatable is
an ordinary Lua table that defines the behavior of the original
value under certain special operations. You can change
several aspects of the behavior of operations over a value by
setting specific fields in its metatable. For instance, when a
non-numeric value is the operand of an addition, Lua checks
for a function in the field "__add" of the value's metatable. If it
finds one, Lua calls this function to perform the addition.

The keys in a metatable are derived from the event names;
the corresponding values are called metamethods. In the
previous example, the event is "add" and the metamethod is

the function that performs the addition.

You can query the metatable of any value using the
getmetatable function.

You can replace the metatable of tables using the
setmetatable function. You cannot change the metatable of
other types from Lua (except by using the debug library); you
must use the C API for that.

Tables and full userdata have individual metatables
(although multiple tables and userdata can share their
metatables). Values of all other types share one single
metatable per type; that is, there is one single metatable for
all numbers, one for all strings, etc. By default, a value has
no metatable, but the string library sets a metatable for the
string type (see §6.4).

A metatable controls how an object behaves in arithmetic
operations, order comparisons, concatenation, length
operation, and indexing. A metatable also can define a
function to be called when a userdata is garbage collected.
When Lua performs one of these operations over a value, it
checks whether this value has a metatable with the
corresponding event. If so, the value associated with that key
(the metamethod) controls how Lua will perform the
operation.

Metatables control the operations listed next. Each operation
is identified by its corresponding name. The key for each
operation is a string with its name prefixed by two
underscores, '__'; for instance, the key for operation "add" is
the string "__add".

The semantics of these operations is better explained by a
Lua function describing how the interpreter executes the
operation. The code shown here in Lua is only illustrative;
the real behavior is hard coded in the interpreter and it is
much more efficient than this simulation. All functions used in
these descriptions (rawget, tonumber, etc.) are described in
§6.1. In particular, to retrieve the metamethod of a given
object, we use the expression

 metatable(obj)[event]
This should be read as

 rawget(getmetatable(obj) or {}, event)
That is, the access to a metamethod does not invoke other
metamethods, and the access to objects with no metatables
does not fail (it simply results in nil).

For the unary - and # operators, the metamethod is called
with a dummy second argument. This extra argument is only
to simplify Lua's internals; it may be removed in future
versions and therefore it is not present in the following code.
(For most uses this extra argument is irrelevant.)

• "add": the + operation. The function getbinhandler below
defines how Lua chooses a handler for a binary
operation. First, Lua tries the first operand. If its type
does not define a handler for the operation, then Lua
tries the second operand.   function
getbinhandler (op1, op2, event)

• return metatable(op1)[event] or
metatable(op2)[event]

• end
•  By using this function, the behavior of the op1 + op2 is  

function add_event (op1, op2)
• local o1, o2 = tonumber(op1), tonumber(op2)
• if o1 and o2 then -- both operands are

numeric?
• return o1 + o2 -- '+' here is the

primitive 'add'
• else -- at least one of the operands is

not numeric
• local h = getbinhandler(op1, op2,

"__add")
• if h then
• -- call the handler with both operands
• return (h(op1, op2))
• else -- no handler available: default

behavior
• error(···)
• end
• end
• end
•  
• "sub": the - operation. Behavior similar to the "add"

operation.
• "mul": the * operation. Behavior similar to the "add"

operation.
• "div": the / operation. Behavior similar to the "add"

operation.
• "mod": the % operation. Behavior similar to the "add"

operation, with the operation o1 - floor(o1/o2)*o2 as
the primitive operation.

• "pow": the ^ (exponentiation) operation. Behavior similar
to the "add" operation, with the function pow (from the
C math library) as the primitive operation.

• "unm": the unary - operation. function unm_event
(op)

• local o = tonumber(op)
• if o then -- operand is numeric?
• return -o -- '-' here is the primitive

'unm'
• else -- the operand is not numeric.
• -- Try to get a handler from the operand
• local h = metatable(op).__unm

• if h then
• -- call the handler with the operand
• return (h(op))
• else -- no handler available: default

behavior
• error(···)
• end
• end
• end
•  
• "concat": the .. (concatenation) operation.

function concat_event (op1, op2)
• if (type(op1) == "string" or type(op1) ==

"number") and
• (type(op2) == "string" or type(op2) ==

"number") then
• return op1 .. op2 -- primitive string

concatenation
• else
• local h = getbinhandler(op1, op2,

"__concat")
• if h then
• return (h(op1, op2))
• else
• error(···)
• end
• end
• end
•  
• "len": the # operation. function len_event (op)
• if type(op) == "string" then
• return strlen(op) -- primitive

string length
• else
• local h = metatable(op).__len
• if h then
• return (h(op)) -- call handler

with the operand
• elseif type(op) == "table" then
• return #op -- primitive

table length
• else -- no handler available: error
• error(···)
• end
• end
• end
•  See §3.4.6 for a description of the length of a table.
• "eq": the == operation. The function getequalhandler

defines how Lua chooses a metamethod for equality. A
metamethod is selected only when both values being
compared have the same type and the same
metamethod for the selected operation. function
getequalhandler (op1, op2, event)

• if type(op1) ~= type(op2) then return nil
end

• local mm1 = metatable(op1)[event]
• local mm2 = metatable(op2)[event]
• if mm1 == mm2 then return mm1 else return

nil end
• end
•  The "eq" event is defined as follows:   function

eq_event (op1, op2)
• if type(op1) ~= type(op2) then --

different types?
• return false -- different values
• end
• if op1 == op2 then -- primitive equal?
• return true -- values are equal
• end
• -- try metamethod
• local h = getequalhandler(op1, op2, "__eq")
• if h then
• return (h(op1, op2))
• else
• return false
• end
• end
•  
• "lt": the < operation. function lt_event (op1,

op2)
• if type(op1) == "number" and type(op2) ==

"number" then
• return op1 < op2 -- numeric comparison
• elseif type(op1) == "string" and type(op2)

== "string" then
• return op1 < op2 -- lexicographic

comparison
• else
• local h = getbinhandler(op1, op2, "__lt")
• if h then
• return (h(op1, op2))
• else
• error(···)
• end
• end
• end
•  
• "le": the <= operation. function le_event (op1,

op2)
• if type(op1) == "number" and type(op2) ==

"number" then
• return op1 <= op2 -- numeric comparison
• elseif type(op1) == "string" and type(op2)

== "string" then
• return op1 <= op2 -- lexicographic

comparison
• else
• local h = getbinhandler(op1, op2, "__le")
• if h then
• return (h(op1, op2))
• else
• h = getbinhandler(op1, op2, "__lt")
• if h then
• return not h(op2, op1)
• else
• error(···)
• end
• end
• end
• end

•  Note that, in the absence of a "le" metamethod, Lua tries
the "lt", assuming that a <= b is equivalent to not (b <
a).

• "index": The indexing access table[key]. Note that the
metamethod is tried only when key is not present in
table. (When table is not a table, no key is ever
present, so the metamethod is always tried.)
function gettable_event (table, key)

• local h
• if type(table) == "table" then
• local v = rawget(table, key)
• -- if key is present, return raw value
• if v ~= nil then return v end
• h = metatable(table).__index
• if h == nil then return nil end
• else
• h = metatable(table).__index
• if h == nil then
• error(···)
• end
• end
• if type(h) == "function" then
• return (h(table, key)) -- call the

handler
• else return h[key] -- or repeat

operation on it
• end
• end
•  
• "newindex": The indexing assignment table[key] =

value. Note that the metamethod is tried only when key
is not present in table. function
settable_event (table, key, value)

• local h
• if type(table) == "table" then
• local v = rawget(table, key)
• -- if key is present, do raw assignment
• if v ~= nil then rawset(table, key,

value); return end

• h = metatable(table).__newindex
• if h == nil then rawset(table, key,

value); return end
• else
• h = metatable(table).__newindex
• if h == nil then
• error(···)
• end
• end
• if type(h) == "function" then
• h(table, key,value) -- call the

handler
• else h[key] = value -- or

repeat operation on it
• end
• end
•  
• "call": called when Lua calls a value. function

function_event (func, ...)
• if type(func) == "function" then
• return func(...) -- primitive call
• else
• local h = metatable(func).__call
• if h then
• return h(func, ...)
• else
• error(···)
• end
• end
• end
•  
2.5 – Garbage Collection
Lua performs automatic memory management. This means
that you have to worry neither about allocating memory for
new objects nor about freeing it when the objects are no
longer needed. Lua manages memory automatically by
running a garbage collector to collect all dead objects (that

is, objects that are no longer accessible from Lua). All
memory used by Lua is subject to automatic management:
tables, userdata, functions, threads, strings, etc.

Lua implements an incremental mark-and-sweep collector. It
uses two numbers to control its garbage-collection cycles:
the garbage-collector pause and the garbage-collector step
multiplier. Both use percentage points as units (e.g., a value
of 100 means an internal value of 1).

The garbage-collector pause controls how long the collector
waits before starting a new cycle. Larger values make the
collector less aggressive. Values smaller than 100 mean the
collector will not wait to start a new cycle. A value of 200
means that the collector waits for the total memory in use to
double before starting a new cycle.

The garbage-collector step multiplier controls the relative
speed of the collector relative to memory allocation. Larger
values make the collector more aggressive but also increase
the size of each incremental step. Values smaller than 100
make the collector too slow and can result in the collector
never finishing a cycle. The default is 200, which means that
the collector runs at "twice" the speed of memory allocation.

If you set the step multiplier to a very large number (larger
than 10% of the maximum number of bytes that the program
may use), the collector behaves like a stop-the-world
collector. If you then set the pause to 200, the collector
behaves as in old Lua versions, doing a complete collection
every time Lua doubles its memory usage.

You can change these numbers by calling lua_gc in C or
collectgarbage in Lua. With these functions you can also

control the collector directly (e.g., stop and restart it).

2.5.1 – Garbage-Collection Metamethods

You can set garbage-collector metamethods for tables and,
using the C API, for full userdata (see §2.4). These
metamethods are also called finalizers. Finalizers allow you
to coordinate Lua's garbage collection with external resource
management (such as closing files, network or database
connections, or freeing your own memory).

For an object (table or userdata) to be finalized when
collected, you must mark it for finalization. You mark an
object for finalization when you set its metatable and the
metatable has a field indexed by the string "__gc". Note that
if you set a metatable without a __gc field and later create
that field in the metatable, the object will not be marked for
finalization. However, after an object is marked, you can
freely change the __gc field of its metatable.

When a marked object becomes garbage, it is not collected
immediately by the garbage collector. Instead, Lua puts it in
a list. After the collection, Lua does the equivalent of the
following function for each object in that list:

 function gc_event (obj)
 local h = metatable(obj).__gc
 if type(h) == "function" then
 h(obj)
 end
 end
At the end of each garbage-collection cycle, the finalizers for
objects are called in the reverse order that they were marked
for collection, among those collected in that cycle; that is, the
first finalizer to be called is the one associated with the

object marked last in the program. The execution of each
finalizer may occur at any point during the execution of the
regular code.

Because the object being collected must still be used by the
finalizer and even resurrected (e.g., stored by the finalizer in
a global variable), the object memory is freed only when it
becomes completely inaccessible (that is, in the next
garbage-collection cycle unless it was resurrected).

2.5.2 – Weak Tables

A weak table is a table whose elements are weak
references. A weak reference is ignored by the garbage
collector. In other words, if the only references to an object
are weak references, then the garbage collector will collect
that object.

A weak table can have weak keys, weak values, or both. A
table with weak keys allows the collection of its keys, but
prevents the collection of its values. A table with both weak
keys and weak values allows the collection of both keys and
values. In any case, if either the key or the value is collected,
the whole pair is removed from the table. The weakness of a
table is controlled by the __mode field of its metatable. If the
__mode field is a string containing the character 'k', the keys
in the table are weak. If __mode contains 'v', the values in the
table are weak.

A table with weak keys and strong values is also called an
ephemeron table. In an ephemeron table, a value is
considered reachable only if its key is reachable. In
particular, if the only reference to a key comes through its
value, the pair is removed.

After you use a table as a metatable, you should not change
the value of its __mode field. Otherwise, the weak behavior of
the tables controlled by this metatable is undefined.

Only objects that have an explicit construction can be
removed from weak tables. Values, such as numbers and
booleans, are not subject to garbage collection, and
therefore are not removed from weak tables (unless its
associated value is collected). Lua treats strings and light C
functions as non-object values.

Objects marked for finalization have a special behavior in
weak tables. When a marked object is a value in a weak
table, it is removed from the table before running its finalizer.
However, when it is a key, it is removed from the table only
after running its finalizer. This behavior allows the finalizer to
access properties associated with the object through weak
tables.

2.6 – Coroutines
Lua supports coroutines, also called collaborative
multithreading. A coroutine in Lua represents an
independent thread of execution. Unlike threads in
multithread systems, however, a coroutine only suspends its
execution by explicitly calling a yield function.

You create a coroutine by calling coroutine.create. Its sole
argument is a function that is the main function of the
coroutine. The create function only creates a new coroutine
and returns a handle to it (an object of type thread); it does
not start the coroutine.

You execute a coroutine by calling coroutine.resume. When

you first call coroutine.resume, passing as its first argument
a thread returned by coroutine.create, the coroutine starts
its execution, at the first line of its main function. Extra
arguments passed to coroutine.resume are passed on to the
coroutine main function. After the coroutine starts running, it
runs until it terminates or yields.

A coroutine can terminate its execution in two ways:
normally, when its main function returns (explicitly or
implicitly, after the last instruction); and abnormally, if there is
an unprotected error. In the first case, coroutine.resume
returns true, plus any values returned by the coroutine main
function. In case of errors, coroutine.resume returns false
plus an error message.

A coroutine yields by calling coroutine.yield. When a
coroutine yields, the corresponding coroutine.resume returns
immediately, even if the yield happens inside nested function
calls (that is, not in the main function, but in a function
directly or indirectly called by the main function). In the case
of a yield, coroutine.resume also returns true, plus any
values passed to coroutine.yield. The next time you
resume the same coroutine, it continues its execution from
the point where it yielded, with the call to coroutine.yield
returning any extra arguments passed to coroutine.resume.

Like coroutine.create, the coroutine.wrap function also
creates a coroutine, but instead of returning the coroutine
itself, it returns a function that, when called, resumes the
coroutine. Any arguments passed to this function go as extra
arguments to coroutine.resume. coroutine.wrap returns all
the values returned by coroutine.resume, except the first one
(the boolean error code). Unlike coroutine.resume,
coroutine.wrap does not catch errors; any error is

propagated to the caller.

As an example of how coroutines work, consider the
following code:

 function foo (a)
 print("foo", a)
 return coroutine.yield(2*a)
 end

 co = coroutine.create(function (a,b)
 print("co-body", a, b)
 local r = foo(a+1)
 print("co-body", r)
 local r, s = coroutine.yield(a+b, a-b)
 print("co-body", r, s)
 return b, "end"
 end)

 print("main", coroutine.resume(co, 1, 10))
 print("main", coroutine.resume(co, "r"))
 print("main", coroutine.resume(co, "x", "y"))
 print("main", coroutine.resume(co, "x", "y"))
When you run it, it produces the following output:

 co-body 1 10
 foo 2

 main true 4
 co-body r
 main true 11 -9
 co-body x y
 main true 10 end
 main false cannot resume dead coroutine
You can also create and manipulate coroutines through the
C API: see functions lua_newthread, lua_resume, and
lua_yield.

3 – The Language
This section describes the lexis, the syntax, and the
semantics of Lua. In other words, this section describes
which tokens are valid, how they can be combined, and what
their combinations mean.

The language constructs will be explained using the usual
extended BNF notation, in which {a} means 0 or more a's,
and [a] means an optional a. Non-terminals are shown like
non-terminal, keywords are shown like kword, and other
terminal symbols are shown like ‘=’. The complete syntax of
Lua can be found in §9 at the end of this manual.

3.1 – Lexical Conventions
Lua is a free-form language. It ignores spaces (including new
lines) and comments between lexical elements (tokens),
except as delimiters between names and keywords.

Names (also called identifiers) in Lua can be any string of
letters, digits, and underscores, not beginning with a digit.
Identifiers are used to name variables, table fields, and
labels.

The following keywords are reserved and cannot be used as
names:

 and break do else elseif
end
 false for function goto if
in
 local nil not or repeat
return

 then true until while
Lua is a case-sensitive language: and is a reserved word, but
And and AND are two different, valid names. As a convention,
names starting with an underscore followed by uppercase
letters (such as _VERSION) are reserved for variables used by
Lua.

The following strings denote other tokens:

 + - * / % ^ #
 == ~= <= >= < > =
 () { } [] ::
 ; : ,
Literal strings can be delimited by matching single or double
quotes, and can contain the following C-like escape
sequences: '\a' (bell), '\b' (backspace), '\f' (form feed), '\n'
(newline), '\r' (carriage return), '\t' (horizontal tab), '\v'
(vertical tab), '\\' (backslash), '\"' (quotation mark [double
quote]), and '\'' (apostrophe [single quote]). A backslash
followed by a real newline results in a newline in the string.
The escape sequence '\z' skips the following span of white-
space characters, including line breaks; it is particularly
useful to break and indent a long string into multiple lines
without adding the newlines and spaces into the string
contents.

A character in a literal string can also be specified by its
numerical value. This can be done with the escape
sequence \xXX, where XX is a sequence of exactly two
hexadecimal digits, or with the escape sequence \ddd, where
ddd is a sequence of up to three decimal digits. (Note that if
a decimal escape is to be followed by a digit, it must be
expressed using exactly three digits.) Strings in Lua can
contain any 8-bit value, including embedded zeros, which
can be specified as '\0'.

Literal strings can also be defined using a long format
enclosed by long brackets. We define an opening long
bracket of level n as an opening square bracket followed by
n equal signs followed by another opening square bracket.
So, an opening long bracket of level 0 is written as [[, an
opening long bracket of level 1 is written as [=[, and so on.
A closing long bracket is defined similarly; for instance, a
closing long bracket of level 4 is written as]====]. A long
string starts with an opening long bracket of any level and
ends at the first closing long bracket of the same level. It can
contain any text except a closing bracket of the proper level.
Literals in this bracketed form can run for several lines, do
not interpret any escape sequences, and ignore long
brackets of any other level. Any kind of end-of-line sequence
(carriage return, newline, carriage return followed by
newline, or newline followed by carriage return) is converted
to a simple newline.

When parsing a from a string source, any byte in a literal
string not explicitly affected by the previous rules represents
itself. However, Lua opens files for parsing in text mode, and
the system file functions may have problems with some
control characters. So, it is safer to represent non-text data
as a quoted literal with explicit escape sequences for non-
text characters.

For convenience, when the opening long bracket is
immediately followed by a newline, the newline is not
included in the string. As an example, in a system using
ASCII (in which 'a' is coded as 97, newline is coded as 10,
and '1' is coded as 49), the five literal strings below denote
the same string:

 a = 'alo\n123"'

 a = "alo\n123\""
 a = '\97lo\10\04923"'
 a = [[alo
 123"]]
 a = [==[
 alo
 123"]==]
A numerical constant can be written with an optional
fractional part and an optional decimal exponent, marked by
a letter 'e' or 'E'. Lua also accepts hexadecimal constants,
which start with 0x or 0X. Hexadecimal constants also accept
an optional fractional part plus an optional binary exponent,
marked by a letter 'p' or 'P'. Examples of valid numerical
constants are

 3 3.0 3.1416 314.16e-2
0.31416E1
 0xff 0x0.1E 0xA23p-4 0X1.921FB54442D18P+1
A comment starts with a double hyphen (--) anywhere
outside a string. If the text immediately after -- is not an
opening long bracket, the comment is a short comment,
which runs until the end of the line. Otherwise, it is a long
comment, which runs until the corresponding closing long
bracket. Long comments are frequently used to disable code
temporarily.

3.2 – Variables
Variables are places that store values. There are three kinds
of variables in Lua: global variables, local variables, and
table fields.

A single name can denote a global variable or a local
variable (or a function's formal parameter, which is a
particular kind of local variable):

 var ::= Name
Name denotes identifiers, as defined in §3.1.

Any variable name is assumed to be global unless explicitly
declared as a local (see §3.3.7). Local variables are lexically
scoped: local variables can be freely accessed by functions
defined inside their scope (see §3.5).

Before the first assignment to a variable, its value is nil.

Square brackets are used to index a table:

 var ::= prefixexp ‘[’ exp ‘]’
The meaning of accesses to table fields can be changed via
metatables. An access to an indexed variable t[i] is
equivalent to a call gettable_event(t,i). (See §2.4 for a
complete description of the gettable_event function. This
function is not defined or callable in Lua. We use it here only
for explanatory purposes.)

The syntax var.Name is just syntactic sugar for var["Name"]:

 var ::= prefixexp ‘.’ Name
An access to a global variable x is equivalent to _ENV.x. Due
to the way that chunks are compiled, _ENV is never a global
name (see §2.2).

3.3 – Statements
Lua supports an almost conventional set of statements,
similar to those in Pascal or C. This set includes
assignments, control structures, function calls, and variable
declarations.

3.3.1 – Blocks

A block is a list of statements, which are executed
sequentially:

 block ::= {stat}
Lua has empty statements that allow you to separate
statements with semicolons, start a block with a semicolon
or write two semicolons in sequence:

 stat ::= ‘;’
A block can be explicitly delimited to produce a single
statement:

 stat ::= do block end
Explicit blocks are useful to control the scope of variable
declarations. Explicit blocks are also sometimes used to add
a return statement in the middle of another block (see
§3.3.4).

3.3.2 – Chunks

The unit of execution of Lua is called a chunk. Syntactically,
a chunk is simply a block:

 chunk ::= block
Lua handles a chunk as the body of an anonymous function
with a variable number of arguments (see §3.4.10). As such,
chunks can define local variables, receive arguments, and
return values. Moreover, such anonymous function is
compiled as in the scope of an external local variable called
_ENV (see §2.2). The resulting function always has _ENV as its
only upvalue, even if it does not use that variable.

A chunk can be stored in a file or in a string inside the host

program. To execute a chunk, Lua first pre-compiles the
chunk into instructions for a virtual machine, and then it
executes the compiled code with an interpreter for the virtual
machine.

Chunks can also be pre-compiled into binary form; see
program luac for details. Programs in source and compiled
forms are interchangeable; Lua automatically detects the file
type and acts accordingly.

3.3.3 – Assignment

Lua allows multiple assignments. Therefore, the syntax for
assignment defines a list of variables on the left side and a
list of expressions on the right side. The elements in both
lists are separated by commas:

 stat ::= varlist ‘=’ explist
 varlist ::= var {‘,’ var}
 explist ::= exp {‘,’ exp}
Expressions are discussed in §3.4.

Before the assignment, the list of values is adjusted to the
length of the list of variables. If there are more values than
needed, the excess values are thrown away. If there are
fewer values than needed, the list is extended with as many
nil's as needed. If the list of expressions ends with a function
call, then all values returned by that call enter the list of
values, before the adjustment (except when the call is
enclosed in parentheses; see §3.4).

The assignment statement first evaluates all its expressions
and only then are the assignments performed. Thus the code

 i = 3

 i, a[i] = i+1, 20
sets a[3] to 20, without affecting a[4] because the i in a[i]
is evaluated (to 3) before it is assigned 4. Similarly, the line

 x, y = y, x
exchanges the values of x and y, and

 x, y, z = y, z, x
cyclically permutes the values of x, y, and z.

The meaning of assignments to global variables and table
fields can be changed via metatables. An assignment to an
indexed variable t[i] = val is equivalent to
settable_event(t,i,val). (See §2.4 for a complete
description of the settable_event function. This function is
not defined or callable in Lua. We use it here only for
explanatory purposes.)

An assignment to a global variable x = val is equivalent to
the assignment _ENV.x = val (see §2.2).

3.3.4 – Control Structures

The control structures if, while, and repeat have the usual
meaning and familiar syntax:

 stat ::= while exp do block end
 stat ::= repeat block until exp
 stat ::= if exp then block {elseif exp then
block} [else block] end
Lua also has a for statement, in two flavors (see §3.3.5).

The condition expression of a control structure can return
any value. Both false and nil are considered false. All values
different from nil and false are considered true (in particular,
the number 0 and the empty string are also true).

In the repeat–until loop, the inner block does not end at the
until keyword, but only after the condition. So, the condition
can refer to local variables declared inside the loop block.

The goto statement transfers the program control to a label.
For syntactical reasons, labels in Lua are considered
statements too:

 stat ::= goto Name
 stat ::= label
 label ::= ‘::’ Name ‘::’
A label is visible in the entire block where it is defined,
except inside nested blocks where a label with the same
name is defined and inside nested functions. A goto may
jump to any visible label as long as it does not enter into the
scope of a local variable.

Both labels and empty statements are called void
statements, as they perform no actions.

The break statement terminates the execution of a while,
repeat, or for loop, skipping to the next statement after the
loop:

 stat ::= break
A break ends the innermost enclosing loop.

The return statement is used to return values from a
function or a chunk (which is a function in disguise).
Functions can return more than one value, so the syntax for
the return statement is

 stat ::= return [explist] [‘;’]
The return statement can only be written as the last
statement of a block. If it is really necessary to return in the

middle of a block, then an explicit inner block can be used,
as in the idiom do return end, because now return is the
last statement in its (inner) block.

3.3.5 – For Statement

The for statement has two forms: one numeric and one
generic.

The numeric for loop repeats a block of code while a control
variable runs through an arithmetic progression. It has the
following syntax:

 stat ::= for Name ‘=’ exp ‘,’ exp [‘,’ exp] do
block end
The block is repeated for name starting at the value of the
first exp, until it passes the second exp by steps of the third
exp. More precisely, a for statement like

 for v = e1, e2, e3 do block end
is equivalent to the code:

 do
 local var, limit, step = tonumber(e1),
tonumber(e2), tonumber(e3)
 if not (var and limit and step) then error()
end
 while (step > 0 and var <= limit) or (step
<= 0 and var >= limit) do
 local v = var
 block
 var = var + step
 end
 end
Note the following:

• All three control expressions are evaluated only once,

before the loop starts. They must all result in numbers.
• var, limit, and step are invisible variables. The names

shown here are for explanatory purposes only.
• If the third expression (the step) is absent, then a step of 1

is used.
• You can use break to exit a for loop.
• The loop variable v is local to the loop; you cannot use its

value after the for ends or is broken. If you need this
value, assign it to another variable before breaking or
exiting the loop.

The generic for statement works over functions, called
iterators. On each iteration, the iterator function is called to
produce a new value, stopping when this new value is nil.
The generic for loop has the following syntax:

 stat ::= for namelist in explist do block end
 namelist ::= Name {‘,’ Name}
A for statement like

 for var_1, ···, var_n in explist do block end
is equivalent to the code:

 do
 local f, s, var = explist
 while true do
 local var_1, ···, var_n = f(s, var)
 if var_1 == nil then break end
 var = var_1
 block
 end
 end
Note the following:

• explist is evaluated only once. Its results are an iterator
function, a state, and an initial value for the first iterator
variable.

• f, s, and var are invisible variables. The names are here
for explanatory purposes only.

• You can use break to exit a for loop.
• The loop variables var_i are local to the loop; you cannot

use their values after the for ends. If you need these
values, then assign them to other variables before
breaking or exiting the loop.

3.3.6 – Function Calls as Statements

To allow possible side-effects, function calls can be executed
as statements:

 stat ::= functioncall
In this case, all returned values are thrown away. Function
calls are explained in §3.4.9.

3.3.7 – Local Declarations

Local variables can be declared anywhere inside a block.
The declaration can include an initial assignment:

 stat ::= local namelist [‘=’ explist]
If present, an initial assignment has the same semantics of a
multiple assignment (see §3.3.3). Otherwise, all variables
are initialized with nil.

A chunk is also a block (see §3.3.2), and so local variables
can be declared in a chunk outside any explicit block.

The visibility rules for local variables are explained in §3.5.

3.4 – Expressions
The basic expressions in Lua are the following:

 exp ::= prefixexp
 exp ::= nil | false | true
 exp ::= Number
 exp ::= String
 exp ::= functiondef
 exp ::= tableconstructor
 exp ::= ‘...’
 exp ::= exp binop exp
 exp ::= unop exp
 prefixexp ::= var | functioncall | ‘(’ exp ‘)’
Numbers and literal strings are explained in §3.1; variables
are explained in §3.2; function definitions are explained in
§3.4.10; function calls are explained in §3.4.9; table
constructors are explained in §3.4.8. Vararg expressions,
denoted by three dots ('...'), can only be used when directly
inside a vararg function; they are explained in §3.4.10.

Binary operators comprise arithmetic operators (see §3.4.1),
relational operators (see §3.4.3), logical operators (see
§3.4.4), and the concatenation operator (see §3.4.5). Unary
operators comprise the unary minus (see §3.4.1), the unary
not (see §3.4.4), and the unary length operator (see §3.4.6).

Both function calls and vararg expressions can result in
multiple values. If an expression is used as a statement (only
possible for function calls (see §3.3.6)), then its return list is
adjusted to zero elements, thus discarding all returned
values. If an expression is used as the last (or the only)
element of a list of expressions, then no adjustment is made
(unless the call is enclosed in parentheses). In all other
contexts, Lua adjusts the result list to one element,
discarding all values except the first one.

Here are some examples:

 f() -- adjusted to 0 results

 g(f(), x) -- f() is adjusted to 1
result
 g(x, f()) -- g gets x plus all
results from f()
 a,b,c = f(), x -- f() is adjusted to 1
result (c gets nil)
 a,b = ... -- a gets the first vararg
parameter, b gets
 -- the second (both a and b
can get nil if there
 -- is no corresponding
vararg parameter)

 a,b,c = x, f() -- f() is adjusted to 2
results
 a,b,c = f() -- f() is adjusted to 3
results
 return f() -- returns all results from
f()
 return ... -- returns all received
vararg parameters
 return x,y,f() -- returns x, y, and all
results from f()
 {f()} -- creates a list with all
results from f()
 {...} -- creates a list with all
vararg parameters
 {f(), nil} -- f() is adjusted to 1
result
Any expression enclosed in parentheses always results in
only one value. Thus, (f(x,y,z)) is always a single value,
even if f returns several values. (The value of (f(x,y,z)) is
the first value returned by f or nil if f does not return any
values.)

3.4.1 – Arithmetic Operators

Lua supports the usual arithmetic operators: the binary +
(addition), - (subtraction), * (multiplication), / (division), %

(modulo), and ^ (exponentiation); and unary - (mathematical
negation). If the operands are numbers, or strings that can
be converted to numbers (see §3.4.2), then all operations
have the usual meaning. Exponentiation works for any
exponent. For instance, x^(-0.5) computes the inverse of
the square root of x. Modulo is defined as

 a % b == a - math.floor(a/b)*b
That is, it is the remainder of a division that rounds the
quotient towards minus infinity.

3.4.2 – Coercion

Lua provides automatic conversion between string and
number values at run time. Any arithmetic operation applied
to a string tries to convert this string to a number, following
the rules of the Lua lexer. (The string may have leading and
trailing spaces, plus an optional sign.) Conversely, whenever
a number is used where a string is expected, the number is
converted to a string, in a reasonable format. For complete
control over how numbers are converted to strings, use the
format function from the string library (see string.format).

3.4.3 – Relational Operators

The relational operators in Lua are

 == ~= < > <= >=
These operators always result in false or true.

Equality (==) first compares the type of its operands. If the
types are different, then the result is false. Otherwise, the
values of the operands are compared. Numbers and strings
are compared in the usual way. Tables, userdata, and

threads are compared by reference: two objects are
considered equal only if they are the same object. Every time
you create a new object (a table, userdata, or thread), this
new object is different from any previously existing object.
Closures with the same reference are always equal.
Closures with any detectable difference (different behavior,
different definition) are always different.

You can change the way that Lua compares tables and
userdata by using the "eq" metamethod (see §2.4).

The conversion rules of §3.4.2 do not apply to equality
comparisons. Thus, "0"==0 evaluates to false, and t[0] and
t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are
numbers, then they are compared as such. Otherwise, if
both arguments are strings, then their values are compared
according to the current locale. Otherwise, Lua tries to call
the "lt" or the "le" metamethod (see §2.4). A comparison a >
b is translated to b < a and a >= b is translated to b <= a.

3.4.4 – Logical Operators

The logical operators in Lua are and, or, and not. Like the
control structures (see §3.3.4), all logical operators consider
both false and nil as false and anything else as true.

The negation operator not always returns false or true. The
conjunction operator and returns its first argument if this
value is false or nil; otherwise, and returns its second
argument. The disjunction operator or returns its first

argument if this value is different from nil and false;
otherwise, or returns its second argument. Both and and or
use short-cut evaluation; that is, the second operand is
evaluated only if necessary. Here are some examples:

 10 or 20 --> 10
 10 or error() --> 10
 nil or "a" --> "a"
 nil and 10 --> nil
 false and error() --> false
 false and nil --> false
 false or nil --> nil
 10 and 20 --> 20
(In this manual, --> indicates the result of the preceding
expression.)

3.4.5 – Concatenation

The string concatenation operator in Lua is denoted by two
dots ('..'). If both operands are strings or numbers, then they
are converted to strings according to the rules mentioned in
§3.4.2. Otherwise, the "concat" metamethod is called (see
§2.4).

3.4.6 – The Length Operator

The length operator is denoted by the unary prefix operator
#. The length of a string is its number of bytes (that is, the
usual meaning of string length when each character is one
byte).

A program can modify the behavior of the length operator for
any value but strings through the __len metamethod (see
§2.4).

Unless a __len metamethod is given, the length of a table t
is only defined if the table is a sequence, that is, the set of its
positive numeric keys is equal to {1..n} for some integer n. In
that case, n is its length. Note that a table like

 {10, 20, nil, 40}
is not a sequence, because it has the key 4 but does not
have the key 3. (So, there is no n such that the set {1..n} is
equal to the set of positive numeric keys of that table.) Note,
however, that non-numeric keys do not interfere with
whether a table is a sequence.

3.4.7 – Precedence

Operator precedence in Lua follows the table below, from
lower to higher priority:

 or
 and
 < > <= >= ~= ==
 ..
 + -
 * / %
 not # - (unary)
 ^
As usual, you can use parentheses to change the
precedences of an expression. The concatenation ('..') and
exponentiation ('^') operators are right associative. All other
binary operators are left associative.

3.4.8 – Table Constructors

Table constructors are expressions that create tables. Every
time a constructor is evaluated, a new table is created. A
constructor can be used to create an empty table or to create

a table and initialize some of its fields. The general syntax for
constructors is

 tableconstructor ::= ‘{’ [fieldlist] ‘}’
 fieldlist ::= field {fieldsep field} [fieldsep]
 field ::= ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp |
exp
 fieldsep ::= ‘,’ | ‘;’
Each field of the form [exp1] = exp2 adds to the new table
an entry with key exp1 and value exp2. A field of the form
name = exp is equivalent to ["name"] = exp. Finally, fields of
the form exp are equivalent to [i] = exp, where i are
consecutive numerical integers, starting with 1. Fields in the
other formats do not affect this counting. For example,

 a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30]
= 23; 45 }
is equivalent to

 do
 local t = {}
 t[f(1)] = g
 t[1] = "x" -- 1st exp
 t[2] = "y" -- 2nd exp
 t.x = 1 -- t["x"] = 1
 t[3] = f(x) -- 3rd exp
 t[30] = 23
 t[4] = 45 -- 4th exp
 a = t
 end
If the last field in the list has the form exp and the expression
is a function call or a vararg expression, then all values
returned by this expression enter the list consecutively (see
§3.4.9).

The field list can have an optional trailing separator, as a
convenience for machine-generated code.

3.4.9 – Function Calls

A function call in Lua has the following syntax:

 functioncall ::= prefixexp args
In a function call, first prefixexp and args are evaluated. If the
value of prefixexp has type function, then this function is
called with the given arguments. Otherwise, the prefixexp
"call" metamethod is called, having as first parameter the
value of prefixexp, followed by the original call arguments
(see §2.4).

The form

 functioncall ::= prefixexp ‘:’ Name args
can be used to call "methods". A call v:name(args) is
syntactic sugar for v.name(v,args), except that v is
evaluated only once.

Arguments have the following syntax:

 args ::= ‘(’ [explist] ‘)’
 args ::= tableconstructor
 args ::= String
All argument expressions are evaluated before the call. A
call of the form f{fields} is syntactic sugar for f({fields});
that is, the argument list is a single new table. A call of the
form f'string' (or f"string" or f[[string]]) is syntactic
sugar for f('string'); that is, the argument list is a single
literal string.

A call of the form return functioncall is called a tail call.
Lua implements proper tail calls (or proper tail recursion): in
a tail call, the called function reuses the stack entry of the
calling function. Therefore, there is no limit on the number of

nested tail calls that a program can execute. However, a tail
call erases any debug information about the calling function.
Note that a tail call only happens with a particular syntax,
where the return has one single function call as argument;
this syntax makes the calling function return exactly the
returns of the called function. So, none of the following
examples are tail calls:

 return (f(x)) -- results adjusted to 1
 return 2 * f(x)
 return x, f(x) -- additional results
 f(x); return -- results discarded
 return x or f(x) -- results adjusted to 1

3.4.10 – Function Definitions

The syntax for function definition is

 functiondef ::= function funcbody
 funcbody ::= ‘(’ [parlist] ‘)’ block end
The following syntactic sugar simplifies function definitions:

 stat ::= function funcname funcbody
 stat ::= local function Name funcbody
 funcname ::= Name {‘.’ Name} [‘:’ Name]
The statement

 function f () body end
translates to

 f = function () body end
The statement

 function t.a.b.c.f () body end
translates to

 t.a.b.c.f = function () body end
The statement

 local function f () body end
translates to

 local f; f = function () body end
not to

 local f = function () body end
(This only makes a difference when the body of the function
contains references to f.)

A function definition is an executable expression, whose
value has type function. When Lua pre-compiles a chunk, all
its function bodies are pre-compiled too. Then, whenever
Lua executes the function definition, the function is
instantiated (or closed). This function instance (or closure) is
the final value of the expression.

Parameters act as local variables that are initialized with the
argument values:

 parlist ::= namelist [‘,’ ‘...’] | ‘...’
When a function is called, the list of arguments is adjusted to
the length of the list of parameters, unless the function is a
variadic or vararg function, which is indicated by three dots
('...') at the end of its parameter list. A vararg function does
not adjust its argument list; instead, it collects all extra
arguments and supplies them to the function through a
vararg expression, which is also written as three dots. The
value of this expression is a list of all actual extra arguments,
similar to a function with multiple results. If a vararg
expression is used inside another expression or in the
middle of a list of expressions, then its return list is adjusted
to one element. If the expression is used as the last element
of a list of expressions, then no adjustment is made (unless
that last expression is enclosed in parentheses).

As an example, consider the following definitions:

 function f(a, b) end
 function g(a, b, ...) end
 function r() return 1,2,3 end
Then, we have the following mapping from arguments to
parameters and to the vararg expression:

 CALL PARAMETERS

 f(3) a=3, b=nil
 f(3, 4) a=3, b=4
 f(3, 4, 5) a=3, b=4
 f(r(), 10) a=1, b=10
 f(r()) a=1, b=2

 g(3) a=3, b=nil, ... -->
(nothing)
 g(3, 4) a=3, b=4, ... -->
(nothing)
 g(3, 4, 5, 8) a=3, b=4, ... --> 5 8
 g(5, r()) a=5, b=1, ... --> 2 3
Results are returned using the return statement (see
§3.3.4). If control reaches the end of a function without
encountering a return statement, then the function returns
with no results.

There is a system-dependent limit on the number of values
that a function may return. This limit is guaranteed to be
larger than 1000.

The colon syntax is used for defining methods, that is,
functions that have an implicit extra parameter self. Thus,
the statement

 function t.a.b.c:f (params) body end
is syntactic sugar for

 t.a.b.c.f = function (self, params) body end

3.5 – Visibility Rules
Lua is a lexically scoped language. The scope of a local
variable begins at the first statement after its declaration and
lasts until the last non-void statement of the innermost block
that includes the declaration. Consider the following
example:

 x = 10 -- global variable
 do -- new block
 local x = x -- new 'x', with value
10
 print(x) --> 10
 x = x+1
 do -- another block
 local x = x+1 -- another 'x'
 print(x) --> 12
 end
 print(x) --> 11
 end
 print(x) --> 10 (the global one)
Notice that, in a declaration like local x = x, the new x
being declared is not in scope yet, and so the second x
refers to the outside variable.

Because of the lexical scoping rules, local variables can be
freely accessed by functions defined inside their scope. A
local variable used by an inner function is called an upvalue,
or external local variable, inside the inner function.

Notice that each execution of a local statement defines new
local variables. Consider the following example:

 a = {}
 local x = 20
 for i=1,10 do

 local y = 0
 a[i] = function () y=y+1; return x+y end
 end
The loop creates ten closures (that is, ten instances of the
anonymous function). Each of these closures uses a
different y variable, while all of them share the same x.

4 – The Application
Program Interface
This section describes the C API for Lua, that is, the set of
C functions available to the host program to communicate
with Lua. All API functions and related types and constants
are declared in the header file lua.h.

Even when we use the term "function", any facility in the API
may be provided as a macro instead. All such macros use
each of their arguments exactly once (except for the first
argument, which is always a Lua state), and so do not
generate any hidden side-effects.

As in most C libraries, the Lua API functions do not check
their arguments for validity or consistency. However, you can
change this behavior by compiling Lua with a proper
definition for the macro luai_apicheck, in file luaconf.h.

4.1 – The Stack
Lua uses a virtual stack to pass values to and from C. Each
element in this stack represents a Lua value (nil, number,
string, etc.).

Whenever Lua calls C, the called function gets a new stack,
which is independent of previous stacks and of stacks of
C functions that are still active. This stack initially contains
any arguments to the C function and it is where the
C function pushes its results to be returned to the caller (see
lua_CFunction).

For convenience, most query operations in the API do not
follow a strict stack discipline. Instead, they can refer to any
element in the stack by using an index: A positive index
represents an absolute stack position (starting at 1); a
negative index represents an offset relative to the top of the
stack. More specifically, if the stack has n elements, then
index 1 represents the first element (that is, the element that
was pushed onto the stack first) and index n represents the
last element; index -1 also represents the last element (that
is, the element at the top) and index -n represents the first
element. We say that an index is valid if it lies between 1 and
the stack top (that is, if 1 ≤ abs(index) ≤ top).

4.2 – Stack Size
When you interact with the Lua API, you are responsible for
ensuring consistency. In particular, you are responsible for
controlling stack overflow. You can use the function
lua_checkstack to ensure that the stack has extra slots when
pushing new elements.

Whenever Lua calls C, it ensures that at least LUA_MINSTACK
stack positions are available. LUA_MINSTACK is defined as 20,
so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.

When you call a Lua function without a fixed number of
results (see lua_call), Lua ensures that the stack has
enough size for all results, but it does not ensure any extra
space. So, before pushing anything in the stack after such a
call you should use lua_checkstack.

Most query functions accept as indices any value inside the
available stack space, that is, indices up to the maximum
stack size that you have set through lua_checkstack. Such
indices are called acceptable indices. More formally, we
define an acceptable index as follows:

 (index < 0 && abs(index) <= top) ||
 (index > 0 && index <= stackspace)
Note that 0 is never an acceptable index.

4.3 – Pseudo-Indices
Unless otherwise noted, any function that accepts valid
indices also accepts pseudo-indices, which represent some
Lua values that are accessible to C code but which are not in
the stack. Pseudo-indices are used to access the registry
and the upvalues of a C function (see §4.4).

4.4 – C Closures
When a C function is created, it is possible to associate
some values with it, thus creating a C closure; these values
are called upvalues and are accessible to the function
whenever it is called (see lua_pushcclosure).

Whenever a C function is called, its upvalues are located at
specific pseudo-indices. These pseudo-indices are produced

by the macro lua_upvalueindex. The first value associated
with a function is at position lua_upvalueindex(1), and so on.
Any access to lua_upvalueindex(n), where n is greater than
the number of upvalues of the current function (but not
greater than 256), produces an acceptable (but invalid)
index.

4.5 – Registry
Lua provides a registry, a pre-defined table that can be used
by any C code to store whatever Lua value it needs to store.
This table is always located at pseudo-index
LUA_REGISTRYINDEX. Any C library can store data into this
table, but it should take care to choose keys different from
those used by other libraries, to avoid collisions. Typically,
you should use as key a string containing your library name,
or a light userdata with the address of a C object in your
code, or any Lua object created by your code. As with global
names, string keys starting with an underscore followed by
uppercase letters are reserved for Lua.

The integer keys in the registry are used by the reference
mechanism, implemented by the auxiliary library, and by
some predefined values. Therefore, integer keys should not
be used for other purposes.

When you create a new Lua state, its registry comes with
some predefined values. These predefined values are
indexed with integer keys defined as constants in lua.h. The
following constants are defined:

• LUA_RIDX_MAINTHREAD: At this index the registry has the
main thread of the state. (The main thread is the one

created together with the state.)
• LUA_RIDX_GLOBALS: At this index the registry has the global

environment. This is the C equivalent to the _G global
variable.

4.6 – Error Handling in C
Internally, Lua uses the C longjmp facility to handle errors.
(You can also choose to use exceptions if you use C++; see
file luaconf.h.) When Lua faces any error (such as a
memory allocation error, type errors, syntax errors, and
runtime errors) it raises an error; that is, it does a long jump.
A protected environment uses setjmp to set a recover point;
any error jumps to the most recent active recover point.

If an error happens outside any protected environment, Lua
calls a panic function (see lua_atpanic) and then calls abort,
thus exiting the host application. Your panic function can
avoid this exit by never returning (e.g., doing a long jump).

Most functions in the API can throw an error, for instance
due to a memory allocation error. The documentation for
each function indicates whether it can throw errors.

Inside a C function you can throw an error by calling
lua_error.

4.7 – Handling Yields in C
Internally, Lua uses the C longjmp facility to yield a coroutine.
Therefore, if a function foo calls an API function and this API
function yields (directly or indirectly by calling another
function that yields), Lua cannot return to foo any more,
because the longjmp removes its frame from the C stack.

To avoid this kind of problem, Lua raises an error whenever
it tries to yield across an API call, except for three functions:
lua_yieldk, lua_callk, and lua_pcallk. All those functions
receive a continuation function (as a parameter called k) to
continue execution after an yield.

To explain continuations, let us set some terminology. We
have a C function called from Lua which we will call the
original function. This original function then calls one of those
three functions in the C API, which we will call the callee
function, that then yields the current thread. (This can
happen when the callee function is lua_yieldk, or when the
callee function is either lua_callk or lua_pcallk and the
function called by them yields.)

Suppose the running thread yields while executing the callee
function. After the thread resumes, it eventually will finish
running the callee function. However, the callee function
cannot return to the original function, because its frame in
the C stack was destroyed by the yield. Instead, Lua calls a
continuation function, which was given as an argument to
the callee function. As the name implies, the continuation
function should continue the task of the original function.

Lua treats the continuation function as if it was the original
function. The continuation function receives the same Lua
stack from the original function, in the same state it would be
if the callee function had returned. (For instance, after a
lua_callk the function and its arguments are removed from
the stack and replaced by the results from the call.) It also
has the same upvalues. Whatever it returns is handled by
Lua as if it was the return of the original function.

The only difference in the Lua state between the original

function and its continuation is the result of a call to
lua_getctx.

4.8 – Functions and Types
Here we list all functions and types from the C API in
alphabetical order. Each function has an indicator like this:

[-o, +p, x]

The first field, o, is how many elements the function pops
from the stack. The second field, p, is how many elements
the function pushes onto the stack. (Any function always
pushes its results after popping its arguments.) A field in the
form x|y means the function can push (or pop) x or y
elements, depending on the situation; an interrogation mark
'?' means that we cannot know how many elements the
function pops/pushes by looking only at its arguments (e.g.,
they may depend on what is on the stack). The third field, x,
tells whether the function may throw errors: '-' means the
function never throws any error; 'm' means the function may
throw an error only due to not enough memory; 'e' means the
function may throw other kinds of errors; 'v' means the
function may throw an error on purpose.

lua_absindex

[-0, +0, -]
int lua_absindex (lua_State *L, int idx);
Converts the acceptable index idx into an absolute index
(that is, one that does not depend on the stack top).

lua_Alloc

typedef void * (*lua_Alloc) (void *ud,
 void *ptr,
 size_t osize,
 size_t nsize);
The type of the memory-allocation function used by Lua
states. The allocator function must provide a functionality
similar to realloc, but not exactly the same. Its arguments
are ud, an opaque pointer passed to lua_newstate; ptr, a
pointer to the block being allocated/reallocated/freed; osize,
the original size of the block or some code about what is
being allocated; nsize, the new size of the block.

When ptr is not NULL, osize is the size of the block pointed
by ptr, that is, the size given when it was allocated or
reallocated.

When ptr is NULL, osize codes the kind of object that Lua is
allocating. osize is any of LUA_TSTRING, LUA_TTABLE,
LUA_TFUNCTION, LUA_TUSERDATA, or LUA_TTHREAD when (and
only when) Lua is creating a new object of that type. When
osize is some other value, Lua is allocating memory for
something else.

Lua assumes the following behavior from the allocator
function:

When nsize is zero, the allocator should behave like free
and return NULL.

When nsize is not zero, the allocator should behave like
realloc. The allocator returns NULL if and only if it cannot fill

the request. Lua assumes that the allocator never fails when
osize >= nsize.

Here is a simple implementation for the allocator function. It
is used in the auxiliary library by luaL_newstate.

 static void *l_alloc (void *ud, void *ptr,
size_t osize,

size_t nsize) {
 (void)ud; (void)osize; /* not used */
 if (nsize == 0) {
 free(ptr);
 return NULL;
 }
 else
 return realloc(ptr, nsize);
 }
Note that Standard C ensures that free(NULL) has no effect
and that realloc(NULL, size) is equivalent to malloc(size).
This code assumes that realloc does not fail when shrinking
a block. Standard C does not ensure this behavior, but it
seems a safe assumption.

lua_arith

[-(2|1), +1, e]
int lua_arith (lua_State *L, int op);
Performs an arithmetic operation over the two values (or
one, in the case of negation) at the top of the stack, with the
value at the top being the second operand, pops these
values, and pushes the result of the operation. The function
follows the semantics of the corresponding Lua operator
(that is, it may call metamethods).

The value of op must be one of the following constants:

• LUA_OPADD: performs addition (+)
• LUA_OPSUB: performs subtraction (-)
• LUA_OPMUL: performs multiplication (*)
• LUA_OPDIV: performs division (/)
• LUA_OPMOD: performs modulo (%)
• LUA_OPPOW: performs exponentiation (^)
• LUA_OPUNM: performs mathematical negation (unary -)

lua_atpanic

[-0, +0, -]
lua_CFunction lua_atpanic (lua_State *L,
lua_CFunction panicf);
Sets a new panic function and returns the old one (see §4.6).

The panic function should not try to run anything on the
failed Lua state. However, it can still use the debug API (see
§4.9) to gather information about the state. In particular, the
error message is at the top of the stack.

lua_call

[-(nargs + 1), +nresults, e]
void lua_call (lua_State *L, int nargs, int
nresults);
Calls a function.

To call a function you must use the following protocol: first,
the function to be called is pushed onto the stack; then, the
arguments to the function are pushed in direct order; that is,
the first argument is pushed first. Finally you call lua_call;

nargs is the number of arguments that you pushed onto the
stack. All arguments and the function value are popped from
the stack when the function is called. The function results are
pushed onto the stack when the function returns. The
number of results is adjusted to nresults, unless nresults is
LUA_MULTRET. In this case, all results from the function are
pushed. Lua takes care that the returned values fit into the
stack space. The function results are pushed onto the stack
in direct order (the first result is pushed first), so that after the
call the last result is on the top of the stack.

Any error inside the called function is propagated upwards
(with a longjmp).

The following example shows how the host program can do
the equivalent to this Lua code:

 a = f("how", t.x, 14)
Here it is in C:

 lua_getglobal(L, "f"); /*
function to be called */
 lua_pushstring(L, "how");
/* 1st argument */
 lua_getglobal(L, "t"); /*
table to be indexed */
 lua_getfield(L, -1, "x"); /* push
result of t.x (2nd arg) */
 lua_remove(L, -2); /* remove
't' from the stack */
 lua_pushinteger(L, 14);
/* 3rd argument */
 lua_call(L, 3, 1); /* call 'f' with 3
arguments and 1 result */
 lua_setglobal(L, "a");
/* set global 'a' */
Note that the code above is "balanced": at its end, the stack

is back to its original configuration. This is considered good
programming practice.

lua_callk

[-(nargs + 1), +nresults, e]
void lua_callk (lua_State *L, int nargs, int
nresults, int ctx,
 lua_CFunction k);
This function behaves exactly like lua_call, but allows the
called function to yield (see §4.7).

lua_CFunction

typedef int (*lua_CFunction) (lua_State *L);
Type for C functions.

In order to communicate properly with Lua, a C function must
use the following protocol, which defines the way parameters
and results are passed: a C function receives its arguments
from Lua in its stack in direct order (the first argument is
pushed first). So, when the function starts, lua_gettop(L)
returns the number of arguments received by the function.
The first argument (if any) is at index 1 and its last argument
is at index lua_gettop(L). To return values to Lua, a
C function just pushes them onto the stack, in direct order
(the first result is pushed first), and returns the number of
results. Any other value in the stack below the results will be
properly discarded by Lua. Like a Lua function, a C function
called by Lua can also return many results.

As an example, the following function receives a variable

number of numerical arguments and returns their average
and sum:

 static int foo (lua_State *L) {
 int n = lua_gettop(L); /* number of
arguments */
 lua_Number sum = 0;
 int i;
 for (i = 1; i <= n; i++) {
 if (!lua_isnumber(L, i)) {
 lua_pushstring(L, "incorrect argument");
 lua_error(L);
 }
 sum += lua_tonumber(L, i);
 }
 lua_pushnumber(L, sum/n); /* first
result */
 lua_pushnumber(L, sum); /* second
result */
 return 2; /* number of
results */
 }

lua_checkstack

[-0, +0, -]
int lua_checkstack (lua_State *L, int extra);
Ensures that there are at least extra free stack slots in the
stack. It returns false if it cannot grant the request, because it
would cause the stack to be larger than a fixed maximum
size (typically at least a few thousand elements) or because
it cannot allocate memory for the new stack size. This
function never shrinks the stack; if the stack is already larger
than the new size, it is left unchanged.

lua_close

[-0, +0, -]
void lua_close (lua_State *L);
Destroys all objects in the given Lua state (calling the
corresponding garbage-collection metamethods, if any) and
frees all dynamic memory used by this state. On several
platforms, you may not need to call this function, because all
resources are naturally released when the host program
ends. On the other hand, long-running programs, such as a
daemon or a web server, might need to release states as
soon as they are not needed, to avoid growing too large.

lua_compare

[-0, +0, e]
int lua_compare (lua_State *L, int index1, int
index2, int op);
Returns 1 if the value at acceptable index index1 satisfies op
when compared with the value at acceptable index index2,
following the semantics of the corresponding Lua operator
(that is, it may call metamethods). Otherwise returns 0. Also
returns 0 if any of the indices is non valid.

The value of op must be one of the following constants:

• LUA_OPEQ: compares for equality (==)
• LUA_OPLT: compares for less than (<)
• LUA_OPLE: compares for less or equal (<=)

lua_concat

[-n, +1, e]
void lua_concat (lua_State *L, int n);
Concatenates the n values at the top of the stack, pops
them, and leaves the result at the top. If n is 1, the result is
the single value on the stack (that is, the function does
nothing); if n is 0, the result is the empty string.
Concatenation is performed following the usual semantics of
Lua (see §3.4.5).

lua_copy

[-0, +0, -]
void lua_copy (lua_State *L, int fromidx, int
toidx);
Moves the element at the valid index fromidx into the valid
index toidx without shifting any element (therefore replacing
the value at that position).

lua_createtable

[-0, +1, m]
void lua_createtable (lua_State *L, int narr, int
nrec);
Creates a new empty table and pushes it onto the stack.
Parameter narr is a hint for how many elements the table will
have as a sequence; parameter nrec is a hint for how many
other elements the table will have. Lua may use these hints
to preallocate memory for the new table. This pre-allocation
is useful for performance when you know in advance how
many elements the table will have. Otherwise you can use
the function lua_newtable.

lua_dump

[-0, +0, m]
int lua_dump (lua_State *L, lua_Writer writer, void
*data);
Dumps a function as a binary chunk. Receives a Lua
function on the top of the stack and produces a binary chunk
that, if loaded again, results in a function equivalent to the
one dumped. As it produces parts of the chunk, lua_dump
calls function writer (see lua_Writer) with the given data to
write them.

The value returned is the error code returned by the last call
to the writer; 0 means no errors.

This function does not pop the Lua function from the stack.

lua_error

[-1, +0, v]
int lua_error (lua_State *L);
Generates a Lua error. The error message (which can
actually be a Lua value of any type) must be on the stack
top. This function does a long jump, and therefore never
returns. (see luaL_error).

lua_gc

[-0, +0, e]
int lua_gc (lua_State *L, int what, int data);

Controls the garbage collector.

This function performs several tasks, according to the value
of the parameter what:

• LUA_GCSTOP: stops the garbage collector.
• LUA_GCRESTART: restarts the garbage collector.
• LUA_GCCOLLECT: performs a full garbage-collection cycle.
• LUA_GCCOUNT: returns the current amount of memory (in

Kbytes) in use by Lua.
• LUA_GCCOUNTB: returns the remainder of dividing the current

amount of bytes of memory in use by Lua by 1024.
• LUA_GCSTEP: performs an incremental step of garbage

collection. The step "size" is controlled by data (larger
values mean more steps) in a non-specified way. If you
want to control the step size you must experimentally
tune the value of data. The function returns 1 if the step
finished a garbage-collection cycle.

• LUA_GCSETPAUSE: sets data as the new value for the pause
of the collector (see §2.5). The function returns the
previous value of the pause.

• LUA_GCSETSTEPMUL: sets data as the new value for the step
multiplier of the collector (see §2.5). The function
returns the previous value of the step multiplier.

• LUA_GCISRUNNING: returns a boolean that tells whether the
collector is running (i.e., not stopped).

For more details about some options, see collectgarbage.

lua_getallocf

[-0, +0, -]
lua_Alloc lua_getallocf (lua_State *L, void **ud);

Returns the memory-allocation function of a given state. If ud
is not NULL, Lua stores in *ud the opaque pointer passed to
lua_newstate.

lua_getctx

[-0, +0, -]
int lua_getctx (lua_State *L, int *ctx);
This function is called by a continuation function (see §4.7)
to retrieve the status of the thread and a context information.

When called in the original function, lua_getctx always
returns LUA_OK and does not change the value of its
argument ctx. When called inside a continuation function,
lua_getctx returns LUA_YIELD and sets the value of ctx to be
the context information (the value passed as the ctx
argument to the callee together with the continuation
function).

When the callee is lua_pcallk, Lua may also call its
continuation function to handle errors during the call. That is,
upon an error in the function called by lua_pcallk, Lua may
not return lua_pcallk but instead may call the continuation
function. In that case, a call to lua_getctx will return the error
code (the value that would be returned by lua_pcallk); the
value of ctx will be set to the context information, as in the
case of an yield.

lua_getfield

[-0, +1, e]

void lua_getfield (lua_State *L, int index, const
char *k);
Pushes onto the stack the value t[k], where t is the value at
the given valid index. As in Lua, this function may trigger a
metamethod for the "index" event (see §2.4).

lua_getglobal

[-0, +1, e]
void lua_getglobal (lua_State *L, const char
*name);
Pushes onto the stack the value of the global name. It is
defined as a macro.

lua_getmetatable

[-0, +(0|1), -]
int lua_getmetatable (lua_State *L, int index);
Pushes onto the stack the metatable of the value at the
given acceptable index. If the index is not valid, or if the
value does not have a metatable, the function returns 0 and
pushes nothing on the stack.

lua_gettable

[-1, +1, e]
void lua_gettable (lua_State *L, int index);
Pushes onto the stack the value t[k], where t is the value at
the given valid index and k is the value at the top of the
stack.

This function pops the key from the stack (putting the
resulting value in its place). As in Lua, this function may
trigger a metamethod for the "index" event (see §2.4).

lua_gettop

[-0, +0, -]
int lua_gettop (lua_State *L);
Returns the index of the top element in the stack. Because
indices start at 1, this result is equal to the number of
elements in the stack (and so 0 means an empty stack).

lua_getuservalue

[-0, +1, -]
void lua_getuservalue (lua_State *L, int index);
Pushes onto the stack the Lua value associated with the
userdata at the given index. This Lua value must be a table
or nil.

lua_insert

[-1, +1, -]
void lua_insert (lua_State *L, int index);
Moves the top element into the given valid index, shifting up
the elements above this index to open space. Cannot be
called with a pseudo-index, because a pseudo-index is not
an actual stack position.

lua_Integer

typedef ptrdiff_t lua_Integer;
The type used by the Lua API to represent signed integral
values.

By default it is a ptrdiff_t, which is usually the largest
signed integral type the machine handles "comfortably".

lua_isboolean

[-0, +0, -]
int lua_isboolean (lua_State *L, int index);
Returns 1 if the value at the given acceptable index has type
boolean, and 0 otherwise.

lua_iscfunction

[-0, +0, -]
int lua_iscfunction (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a
C function, and 0 otherwise.

lua_isfunction

[-0, +0, -]
int lua_isfunction (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a
function (either C or Lua), and 0 otherwise.

lua_islightuserdata

[-0, +0, -]
int lua_islightuserdata (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a light
userdata, and 0 otherwise.

lua_isnil

[-0, +0, -]
int lua_isnil (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is nil,
and 0 otherwise.

lua_isnone

[-0, +0, -]
int lua_isnone (lua_State *L, int index);
Returns 1 if the given acceptable index is not valid (that is, it
refers to an element outside the current stack), and
0 otherwise.

lua_isnoneornil

[-0, +0, -]
int lua_isnoneornil (lua_State *L, int index);
Returns 1 if the given acceptable index is not valid (that is, it
refers to an element outside the current stack) or if the value

at this index is nil, and 0 otherwise.

lua_isnumber

[-0, +0, -]
int lua_isnumber (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a
number or a string convertible to a number, and 0 otherwise.

lua_isstring

[-0, +0, -]
int lua_isstring (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a
string or a number (which is always convertible to a string),
and 0 otherwise.

lua_istable

[-0, +0, -]
int lua_istable (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a
table, and 0 otherwise.

lua_isthread

[-0, +0, -]
int lua_isthread (lua_State *L, int index);

Returns 1 if the value at the given acceptable index is a
thread, and 0 otherwise.

lua_isuserdata

[-0, +0, -]
int lua_isuserdata (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a
userdata (either full or light), and 0 otherwise.

lua_len

[-0, +1, e]
void lua_len (lua_State *L, int index);
Returns the "length" of the value at the given acceptable
index; it is equivalent to the '#' operator in Lua (see §3.4.6).
The result is pushed on the stack.

lua_load

[-0, +1, -]
int lua_load (lua_State *L,
 lua_Reader reader,
 void *data,
 const char *source);
Loads a Lua chunk. If there are no errors, lua_load pushes
the compiled chunk as a Lua function on top of the stack.
Otherwise, it pushes an error message. The return values of
lua_load are:

• LUA_OK (0): no errors;
• LUA_ERRSYNTAX: syntax error during pre-compilation;
• LUA_ERRMEM: memory allocation error.
• LUA_ERRGCMM: error while running a __gc metamethod. (This

error has no relation with the chunk being loaded. It is
generated by the garbage collector.)

This function only loads a chunk; it does not run it.

lua_load automatically detects whether the chunk is text or
binary, and loads it accordingly (see program luac).

The lua_load function uses a user-supplied reader function
to read the chunk (see lua_Reader). The data argument is an
opaque value passed to the reader function.

The source argument gives a name to the chunk, which is
used for error messages and in debug information (see
§4.9).

If the resulting function has one upvalue, this upvalue is set
to the value of the global environment stored at index
LUA_RIDX_GLOBALS in the registry (see §4.5). (When loading
main chunks, this upvalue will be the _ENV variable (see
§2.2).)

lua_newstate

[-0, +0, -]
lua_State *lua_newstate (lua_Alloc f, void *ud);
Creates a new thread running in a new, independent state.
Returns NULL if cannot create the thread/state (due to lack of
memory). The argument f is the allocator function; Lua does
all memory allocation for this state through this function. The

second argument, ud, is an opaque pointer that Lua simply
passes to the allocator in every call.

lua_newtable

[-0, +1, m]
void lua_newtable (lua_State *L);
Creates a new empty table and pushes it onto the stack. It is
equivalent to lua_createtable(L, 0, 0).

lua_newthread

[-0, +1, m]
lua_State *lua_newthread (lua_State *L);
Creates a new thread, pushes it on the stack, and returns a
pointer to a lua_State that represents this new thread. The
new thread returned by this function shares with the original
thread all global objects (such as tables), but has an
independent execution stack.

There is no explicit function to close or to destroy a thread.
Threads are subject to garbage collection, like any Lua
object.

lua_newuserdata

[-0, +1, m]
void *lua_newuserdata (lua_State *L, size_t size);
This function allocates a new block of memory with the given
size, pushes onto the stack a new full userdata with the

block address, and returns this address.

Userdata represent C values in Lua. A full userdata
represents a block of memory. It is an object (like a table):
you must create it, it can have its own metatable, and you
can detect when it is being collected. A full userdata is only
equal to itself (under raw equality).

lua_next

[-1, +(2|0), e]
int lua_next (lua_State *L, int index);
Pops a key from the stack, and pushes a key–value pair
from the table at the given index (the "next" pair after the
given key). If there are no more elements in the table, then
lua_next returns 0 (and pushes nothing).

A typical traversal looks like this:

 /* table is in the stack at index 't' */
 lua_pushnil(L); /* first key */
 while (lua_next(L, t) != 0) {
 /* uses 'key' (at index -2) and 'value' (at
index -1) */
 printf("%s - %s\n",
 lua_typename(L, lua_type(L, -2)),
 lua_typename(L, lua_type(L, -1)));
 /* removes 'value'; keeps 'key' for next
iteration */
 lua_pop(L, 1);
 }
While traversing a table, do not call lua_tolstring directly on
a key, unless you know that the key is actually a string.
Recall that lua_tolstring may change the value at the given
index; this confuses the next call to lua_next.

See function next for the caveats of modifying the table
during its traversal.

lua_Number

typedef double lua_Number;
The type of numbers in Lua. By default, it is double, but that
can be changed in luaconf.h. Through this configuration file
you can change Lua to operate with another type for
numbers (e.g., float or long).

lua_pcall

[-(nargs + 1), +(nresults|1), -]
int lua_pcall (lua_State *L, int nargs, int
nresults, int msgh);
Calls a function in protected mode.

Both nargs and nresults have the same meaning as in
lua_call. If there are no errors during the call, lua_pcall
behaves exactly like lua_call. However, if there is any error,
lua_pcall catches it, pushes a single value on the stack (the
error message), and returns an error code. Like lua_call,
lua_pcall always removes the function and its arguments
from the stack.

If msgh is 0, then the error message returned on the stack is
exactly the original error message. Otherwise, msgh is the
stack index of a message handler. (In the current
implementation, this index cannot be a pseudo-index.) In
case of runtime errors, this function will be called with the

error message and its return value will be the message
returned on the stack by lua_pcall.

Typically, the message handler is used to add more debug
information to the error message, such as a stack traceback.
Such information cannot be gathered after the return of
lua_pcall, since by then the stack has unwound.

The lua_pcall function returns one of the following codes
(defined in lua.h):

• LUA_OK (0): success.
• LUA_ERRRUN: a runtime error.
• LUA_ERRMEM: memory allocation error. For such errors, Lua

does not call the message handler.
• LUA_ERRERR: error while running the message handler.
• LUA_ERRGCMM: error while running a __gc metamethod. (This

error typically has no relation with the function being
called. It is generated by the garbage collector.)

lua_pcallk

[-(nargs + 1), +(nresults|1), -]
int lua_pcallk (lua_State *L, int nargs, int
nresults, int errfunc,
 int ctx, lua_CFunction k);
This function behaves exactly like lua_pcall, but allows the
called function to yield (see §4.7).

lua_pop

[-n, +0, -]
void lua_pop (lua_State *L, int n);

Pops n elements from the stack.

lua_pushboolean

[-0, +1, -]
void lua_pushboolean (lua_State *L, int b);
Pushes a boolean value with value b onto the stack.

lua_pushcclosure

[-n, +1, m]
void lua_pushcclosure (lua_State *L, lua_CFunction
fn, int n);
Pushes a new C closure onto the stack.

When a C function is created, it is possible to associate
some values with it, thus creating a C closure (see §4.4);
these values are then accessible to the function whenever it
is called. To associate values with a C function, first these
values should be pushed onto the stack (when there are
multiple values, the first value is pushed first). Then
lua_pushcclosure is called to create and push the C function
onto the stack, with the argument n telling how many values
should be associated with the function. lua_pushcclosure
also pops these values from the stack.

The maximum value for n is 255.

When n is zero, this function creates a light C function, which
is just a pointer to the C function. In that case, it cannot
throw a memory error.

lua_pushcfunction

[-0, +1, -]
void lua_pushcfunction (lua_State *L, lua_CFunction
f);
Pushes a C function onto the stack. This function receives a
pointer to a C function and pushes onto the stack a Lua
value of type function that, when called, invokes the
corresponding C function.

Any function to be registered in Lua must follow the correct
protocol to receive its parameters and return its results (see
lua_CFunction).

lua_pushcfunction is defined as a macro:

 #define lua_pushcfunction(L,f)
lua_pushcclosure(L,f,0)

lua_pushfstring

[-0, +1, m]
const char *lua_pushfstring (lua_State *L, const
char *fmt, ...);
Pushes onto the stack a formatted string and returns a
pointer to this string. It is similar to the C function sprintf,
but has some important differences:

• You do not have to allocate space for the result: the result
is a Lua string and Lua takes care of memory allocation
(and deallocation, through garbage collection).

• The conversion specifiers are quite restricted. There are no
flags, widths, or precisions. The conversion specifiers

can only be '%%' (inserts a '%' in the string), '%s' (inserts a
zero-terminated string, with no size restrictions), '%f'
(inserts a lua_Number), '%p' (inserts a pointer as a
hexadecimal numeral), '%d' (inserts an int), and '%c'
(inserts an int as a character).

lua_pushinteger

[-0, +1, -]
void lua_pushinteger (lua_State *L, lua_Integer n);
Pushes a number with value n onto the stack.

lua_pushlightuserdata

[-0, +1, -]
void lua_pushlightuserdata (lua_State *L, void *p);
Pushes a light userdata onto the stack.

Userdata represent C values in Lua. A light userdata
represents a pointer, a void*. It is a value (like a number):
you do not create it, it has no individual metatable, and it is
not collected (as it was never created). A light userdata is
equal to "any" light userdata with the same C address.

lua_pushliteral

[-0, +1, m]
const char *lua_pushliteral (lua_State *L, const
char *s);
This macro is equivalent to lua_pushlstring, but can be
used only when s is a literal string. In these cases, it

automatically provides the string length.

lua_pushlstring

[-0, +1, m]
const char *lua_pushlstring (lua_State *L, const
char *s, size_t len);
Pushes the string pointed to by s with size len onto the
stack. Lua makes (or reuses) an internal copy of the given
string, so the memory at s can be freed or reused
immediately after the function returns. The string can contain
any binary data, including embedded zeros.

Returns a pointer to the internal copy of the string.

lua_pushnil

[-0, +1, -]
void lua_pushnil (lua_State *L);
Pushes a nil value onto the stack.

lua_pushnumber

[-0, +1, -]
void lua_pushnumber (lua_State *L, lua_Number n);
Pushes a number with value n onto the stack.

lua_pushstring

[-0, +1, m]
const char *lua_pushstring (lua_State *L, const
char *s);
Pushes the zero-terminated string pointed to by s onto the
stack. Lua makes (or reuses) an internal copy of the given
string, so the memory at s can be freed or reused
immediately after the function returns.

Returns a pointer to the internal copy of the string.

If s is NULL, pushes nil and returns NULL.

lua_pushthread

[-0, +1, -]
int lua_pushthread (lua_State *L);
Pushes the thread represented by L onto the stack. Returns
1 if this thread is the main thread of its state.

lua_pushvalue

[-0, +1, -]
void lua_pushvalue (lua_State *L, int index);
Pushes a copy of the element at the given valid index onto
the stack.

lua_pushvfstring

[-0, +1, m]
const char *lua_pushvfstring (lua_State *L,
 const char *fmt,

 va_list argp);
Equivalent to lua_pushfstring, except that it receives a
va_list instead of a variable number of arguments.

lua_rawequal

[-0, +0, -]
int lua_rawequal (lua_State *L, int index1, int
index2);
Returns 1 if the two values in acceptable indices index1 and
index2 are primitively equal (that is, without calling
metamethods). Otherwise returns 0. Also returns 0 if any of
the indices are non valid.

lua_rawget

[-1, +1, -]
void lua_rawget (lua_State *L, int index);
Similar to lua_gettable, but does a raw access (i.e., without
metamethods).

lua_rawgeti

[-0, +1, -]
void lua_rawgeti (lua_State *L, int index, int n);
Pushes onto the stack the value t[n], where t is the table at
the given valid index. The access is raw; that is, it does not
invoke metamethods.

lua_rawlen

[-0, +0, -]
size_t lua_rawlen (lua_State *L, int index);
Returns the raw "length" of the value at the given acceptable
index: for strings, this is the string length; for tables, this is
the result of the length operator ('#') with no metamethods;
for userdata, this is the size of the block of memory allocated
for the userdata; for other values, it is 0.

lua_rawset

[-2, +0, m]
void lua_rawset (lua_State *L, int index);
Similar to lua_settable, but does a raw assignment (i.e.,
without metamethods).

lua_rawseti

[-1, +0, m]
void lua_rawseti (lua_State *L, int index, int n);
Does the equivalent of t[n] = v, where t is the table at the
given valid index and v is the value at the top of the stack.

This function pops the value from the stack. The assignment
is raw; that is, it does not invoke metamethods.

lua_Reader

typedef const char * (*lua_Reader) (lua_State *L,

 void *data,
 size_t *size);
The reader function used by lua_load. Every time it needs
another piece of the chunk, lua_load calls the reader,
passing along its data parameter. The reader must return a
pointer to a block of memory with a new piece of the chunk
and set size to the block size. The block must exist until the
reader function is called again. To signal the end of the
chunk, the reader must return NULL or set size to zero. The
reader function may return pieces of any size greater than
zero.

lua_register

[-0, +0, e]
void lua_register (lua_State *L,
 const char *name,
 lua_CFunction f);
Sets the C function f as the new value of global name. It is
defined as a macro:

 #define lua_register(L,n,f) \
 (lua_pushcfunction(L, f),
lua_setglobal(L, n))

lua_remove

[-1, +0, -]
void lua_remove (lua_State *L, int index);
Removes the element at the given valid index, shifting down
the elements above this index to fill the gap. Cannot be
called with a pseudo-index, because a pseudo-index is not
an actual stack position.

lua_replace

[-1, +0, -]
void lua_replace (lua_State *L, int index);
Moves the top element into the given position without shifting
any element (therefore replacing the value at the given
position), and then pops the top element.

lua_resume

[-?, +?, -]
int lua_resume (lua_State *L, int narg);
Starts and resumes a coroutine in a given thread.

To start a coroutine, you push onto the thread stack the main
function plus any arguments; then you call lua_resume, with
narg being the number of arguments. This call returns when
the coroutine suspends or finishes its execution. When it
returns, the stack contains all values passed to lua_yield, or
all values returned by the body function. lua_resume returns
LUA_YIELD if the coroutine yields, LUA_OK if the coroutine
finishes its execution without errors, or an error code in case
of errors (see lua_pcall).

In case of errors, the stack is not unwound, so you can use
the debug API over it. The error message is on the top of the
stack.

To resume a coroutine, you put on its stack only the values
to be passed as results from yield, and then call lua_resume.

lua_setallocf

[-0, +0, -]
void lua_setallocf (lua_State *L, lua_Alloc f, void
*ud);
Changes the allocator function of a given state to f with user
data ud.

lua_setfield

[-1, +0, e]
void lua_setfield (lua_State *L, int index, const
char *k);
Does the equivalent to t[k] = v, where t is the value at the
given valid index and v is the value at the top of the stack.

This function pops the value from the stack. As in Lua, this
function may trigger a metamethod for the "newindex" event
(see §2.4).

lua_setglobal

[-1, +0, e]
void lua_setglobal (lua_State *L, const char
*name);
Pops a value from the stack and sets it as the new value of
global name. It is defined as a macro.

lua_setmetatable

[-1, +0, -]
void lua_setmetatable (lua_State *L, int index);
Pops a table from the stack and sets it as the new metatable
for the value at the given acceptable index.

lua_settable

[-2, +0, e]
void lua_settable (lua_State *L, int index);
Does the equivalent to t[k] = v, where t is the value at the
given valid index, v is the value at the top of the stack, and k
is the value just below the top.

This function pops both the key and the value from the stack.
As in Lua, this function may trigger a metamethod for the
"newindex" event (see §2.4).

lua_settop

[-?, +?, -]
void lua_settop (lua_State *L, int index);
Accepts any acceptable index, or 0, and sets the stack top to
this index. If the new top is larger than the old one, then the
new elements are filled with nil. If index is 0, then all stack
elements are removed.

lua_setuservalue

[-1, +0, -]
void lua_setuservalue (lua_State *L, int index);

Pops a table or nil from the stack and sets it as the new
value associated to the userdata at the given index.

lua_State

typedef struct lua_State lua_State;
An opaque structure that keeps the whole state of a Lua
interpreter. The Lua library is fully reentrant: it has no global
variables. All information about a state is kept in this
structure.

A pointer to this state must be passed as the first argument
to every function in the library, except to lua_newstate, which
creates a Lua state from scratch.

lua_status

[-0, +0, -]
int lua_status (lua_State *L);
Returns the status of the thread L.

The status can be 0 (LUA_OK) for a normal thread, an error
code if the thread finished the execution of a lua_resume with
an error, or LUA_YIELD if the thread is suspended.

You can only call functions in threads with status LUA_OK.
You can resume threads with status LUA_OK (to start a new
coroutine) or LUA_YIELD (to resume a coroutine).

lua_toboolean

[-0, +0, -]
int lua_toboolean (lua_State *L, int index);
Converts the Lua value at the given acceptable index to a
C boolean value (0 or 1). Like all tests in Lua, lua_toboolean
returns true for any Lua value different from false and nil;
otherwise it returns false. It also returns false when called
with a non-valid index. (If you want to accept only actual
boolean values, use lua_isboolean to test the value's type.)

lua_tocfunction

[-0, +0, -]
lua_CFunction lua_tocfunction (lua_State *L, int
index);
Converts a value at the given acceptable index to a
C function. That value must be a C function; otherwise,
returns NULL.

lua_tointeger

[-0, +0, -]
lua_Integer lua_tointeger (lua_State *L, int
index);
A macro equivalent to lua_tointegerx(L, index, NULL).

lua_tointegerx

[-0, +0, -]
lua_Integer lua_tointegerx (lua_State *L, int
index, int *isnum);

Converts the Lua value at the given acceptable index to the
signed integral type lua_Integer. The Lua value must be a
number or a string convertible to a number (see §3.4.2);
otherwise, lua_tointegerx returns 0.

If the number is not an integer, it is truncated in some non-
specified way.

If isnum is different from NULL, its referent is assigned a
boolean value that indicates whether the operation
succeeded.

lua_tolstring

[-0, +0, m]
const char *lua_tolstring (lua_State *L, int index,
size_t *len);
Converts the Lua value at the given acceptable index to a
C string. If len is not NULL, it also sets *len with the string
length. The Lua value must be a string or a number;
otherwise, the function returns NULL. If the value is a number,
then lua_tolstring also changes the actual value in the
stack to a string. (This change confuses lua_next when
lua_tolstring is applied to keys during a table traversal.)

lua_tolstring returns a fully aligned pointer to a string inside
the Lua state. This string always has a zero ('\0') after its last
character (as in C), but can contain other zeros in its body.
Because Lua has garbage collection, there is no guarantee
that the pointer returned by lua_tolstring will be valid after
the corresponding value is removed from the stack.

lua_tonumber

[-0, +0, -]
lua_Number lua_tonumber (lua_State *L, int index);
A macro equivalent to lua_tonumberx(L, index, NULL).

lua_tonumberx

[-0, +0, -]
lua_Number lua_tonumberx (lua_State *L, int index,
int *isnum);
Converts the Lua value at the given acceptable index to the
C type lua_Number (see lua_Number). The Lua value must be
a number or a string convertible to a number (see §3.4.2);
otherwise, lua_tonumberx returns 0.

If isnum is different from NULL, its referent is assigned a
boolean value that indicates whether the operation
succeeded.

lua_topointer

[-0, +0, -]
const void *lua_topointer (lua_State *L, int
index);
Converts the value at the given acceptable index to a
generic C pointer (void*). The value can be a userdata, a
table, a thread, or a function; otherwise, lua_topointer
returns NULL. Different objects will give different pointers.
There is no way to convert the pointer back to its original
value.

Typically this function is used only for debug information.

lua_tostring

[-0, +0, m]
const char *lua_tostring (lua_State *L, int index);
Equivalent to lua_tolstring with len equal to NULL.

lua_tothread

[-0, +0, -]
lua_State *lua_tothread (lua_State *L, int index);
Converts the value at the given acceptable index to a Lua
thread (represented as lua_State*). This value must be a
thread; otherwise, the function returns NULL.

lua_tounsigned

[-0, +0, -]
lua_Unsigned lua_tounsigned (lua_State *L, int
index);
A macro equivalent to lua_tounsignedx(L, index, NULL).

lua_tounsignedx

[-0, +0, -]
lua_Unsigned lua_tounsignedx (lua_State *L, int
index, int *isnum);
Converts the Lua value at the given acceptable index to the

unsigned integral type lua_Unsigned. The Lua value must be
a number or a string convertible to a number (see §3.4.2);
otherwise, lua_tounsignedx returns 0.

If the number is not an integer, it is truncated in some non-
specified way. If the number is outside the range of
representable values, it is normalized to the remainder of its
division by one more than the maximum representable value.

If isnum is different from NULL, its referent is assigned a
boolean value that indicates whether the operation
succeeded.

lua_touserdata

[-0, +0, -]
void *lua_touserdata (lua_State *L, int index);
If the value at the given acceptable index is a full userdata,
returns its block address. If the value is a light userdata,
returns its pointer. Otherwise, returns NULL.

lua_type

[-0, +0, -]
int lua_type (lua_State *L, int index);
Returns the type of the value in the given acceptable index,
or LUA_TNONE for a non-valid index (that is, an index to an
"empty" stack position). The types returned by lua_type are
coded by the following constants defined in lua.h: LUA_TNIL,
LUA_TNUMBER, LUA_TBOOLEAN, LUA_TSTRING, LUA_TTABLE,
LUA_TFUNCTION, LUA_TUSERDATA, LUA_TTHREAD, and

LUA_TLIGHTUSERDATA.

lua_typename

[-0, +0, -]
const char *lua_typename (lua_State *L, int tp);
Returns the name of the type encoded by the value tp, which
must be one the values returned by lua_type.

lua_Unsigned

typedef unsigned long lua_Unsigned;
The type used by the Lua API to represent unsigned integral
values. It must have at least 32 bits.

By default it is an unsigned int or an unsigned long,
whichever can hold 32-bit values.

lua_version

[-0, +0, v]
const lua_Number *lua_version (lua_State *L);
Returns the address of the version number stored in the Lua
core. When called with a valid lua_State, returns the
address of the version used to create that state. When called
with NULL, returns the address of the version running the call.

lua_Writer

typedef int (*lua_Writer) (lua_State *L,
 const void* p,
 size_t sz,
 void* ud);
The type of the writer function used by lua_dump. Every time
it produces another piece of chunk, lua_dump calls the writer,
passing along the buffer to be written (p), its size (sz), and
the data parameter supplied to lua_dump.

The writer returns an error code: 0 means no errors; any
other value means an error and stops lua_dump from calling
the writer again.

lua_xmove

[-?, +?, -]
void lua_xmove (lua_State *from, lua_State *to, int
n);
Exchange values between different threads of the same
global state.

This function pops n values from the stack from, and pushes
them onto the stack to.

lua_yield

[-?, +?, -]
int lua_yield (lua_State *L, int nresults);
This function is equivalent to lua_yieldk, but it has no
continuation (see §4.7). Therefore, when the thread
resumes, it returns to the function that called the function
calling lua_yield.

lua_yieldk

[-?, +?, -]
int lua_yieldk (lua_State *L, int nresults, int
ctx, lua_CFunction k);
Yields a coroutine.

This function should only be called as the return expression
of a C function, as follows:

 return lua_yield (L, nresults, i, k);
When a C function calls lua_yieldk in that way, the running
coroutine suspends its execution, and the call to lua_resume
that started this coroutine returns. The parameter nresults is
the number of values from the stack that are passed as
results to lua_resume.

When the coroutine is resumed again, Lua calls the given
continuation function k to continue the execution of the C
function that yielded (see §4.7). This continuation function
receives the same stack from the previous function, with the
results removed and replaced by the arguments passed to
lua_resume. Moreover, the continuation function may access
the value ctx by calling lua_getctx.

4.9 – The Debug Interface
Lua has no built-in debugging facilities. Instead, it offers a
special interface by means of functions and hooks. This
interface allows the construction of different kinds of
debuggers, profilers, and other tools that need "inside
information" from the interpreter.

lua_Debug

typedef struct lua_Debug {
 int event;
 const char *name; /* (n) */
 const char *namewhat; /* (n) */
 const char *what; /* (S) */
 const char *source; /* (S) */
 int currentline; /* (l) */
 int linedefined; /* (S) */
 int lastlinedefined; /* (S) */
 unsigned char nups; /* (u) number of
upvalues */
 unsigned char nparams; /* (u) number of
parameters */
 char isvararg; /* (u) */
 char istailcall; /* (t) */
 char short_src[LUA_IDSIZE]; /* (S) */
 /* private part */
 other fields
} lua_Debug;
A structure used to carry different pieces of information
about a function or an activation record. lua_getstack fills
only the private part of this structure, for later use. To fill the
other fields of lua_Debug with useful information, call
lua_getinfo.

The fields of lua_Debug have the following meaning:

• source: the source of the chunk that created the function. If
source starts with a '@', it means that the function was
defined in a file where the file name follows the '@'. If
source starts with a '=', the rest of it should describe the
source in a user-dependent manner. Otherwise, the
function was defined in a string where source is that
string.

• short_src: a "printable" version of source, to be used in
error messages.

• linedefined: the line number where the definition of the
function starts.

• lastlinedefined: the line number where the definition of
the function ends.

• what: the string "Lua" if the function is a Lua function, "C" if
it is a C function, "main" if it is the main part of a chunk.

• currentline: the current line where the given function is
executing. When no line information is available,
currentline is set to -1.

• name: a reasonable name for the given function. Because
functions in Lua are first-class values, they do not have
a fixed name: some functions can be the value of
multiple global variables, while others can be stored
only in a table field. The lua_getinfo function checks
how the function was called to find a suitable name. If it
cannot find a name, then name is set to NULL.

• namewhat: explains the name field. The value of namewhat can
be "global", "local", "method", "field", "upvalue", or
"" (the empty string), according to how the function was
called. (Lua uses the empty string when no other option
seems to apply.)

• istailcall: true if this function invocation was called by a
tail call. In this case, the caller of this level is not in the
stack.

• nups: the number of upvalues of the function.
• nparams: the number of fixed parameters of the function

(always 0 for C functions).
• isvararg: whether the function is a vararg function (always

true for C functions).

lua_gethook

[-0, +0, -]
lua_Hook lua_gethook (lua_State *L);
Returns the current hook function.

lua_gethookcount

[-0, +0, -]
int lua_gethookcount (lua_State *L);
Returns the current hook count.

lua_gethookmask

[-0, +0, -]
int lua_gethookmask (lua_State *L);
Returns the current hook mask.

lua_getinfo

[-(0|1), +(0|1|2), m]
int lua_getinfo (lua_State *L, const char *what,
lua_Debug *ar);
Returns information about a specific function or function
invocation.

To get information about a function invocation, the parameter
ar must be a valid activation record that was filled by a
previous call to lua_getstack or given as argument to a hook
(see lua_Hook).

To get information about a function you push it onto the

stack and start the what string with the character '>'. (In that
case, lua_getinfo pops the function from the top of the
stack.) For instance, to know in which line a function f was
defined, you can write the following code:

 lua_Debug ar;
 lua_getglobal(L, "f"); /* get global 'f' */
 lua_getinfo(L, ">S", &ar);
 printf("%d\n", ar.linedefined);
Each character in the string what selects some fields of the
structure ar to be filled or a value to be pushed on the stack:

• 'n': fills in the field name and namewhat;
• 'S': fills in the fields source, short_src, linedefined,

lastlinedefined, and what;
• 'l': fills in the field currentline;
• 't': fills in the field istailcall;
• 'u': fills in the fields nups, nparams, and isvararg;
• 'f': pushes onto the stack the function that is running at the

given level;
• 'L': pushes onto the stack a table whose indices are the

numbers of the lines that are valid on the function. (A
valid line is a line with some associated code, that is, a
line where you can put a break point. Non-valid lines
include empty lines and comments.)

This function returns 0 on error (for instance, an invalid
option in what).

lua_getlocal

[-0, +(0|1), -]
const char *lua_getlocal (lua_State *L, lua_Debug
*ar, int n);

Gets information about a local variable of a given activation
record or a given function.

In the first case, the parameter ar must be a valid activation
record that was filled by a previous call to lua_getstack or
given as argument to a hook (see lua_Hook). The index n
selects which local variable to inspect; see debug.getlocal
for details about variable indices and names.

lua_getlocal pushes the variable's value onto the stack and
returns its name.

In the second case, ar should be NULL and the function to be
inspected must be at the top of the stack. In this case, only
parameters of Lua functions are visible (as there is no
information about what variables are active) and no values
are pushed onto the stack.

Returns NULL (and pushes nothing) when the index is greater
than the number of active local variables.

lua_getstack

[-0, +0, -]
int lua_getstack (lua_State *L, int level,
lua_Debug *ar);
Get information about the interpreter runtime stack.

This function fills parts of a lua_Debug structure with an
identification of the activation record of the function
executing at a given level. Level 0 is the current running
function, whereas level n+1 is the function that has called
level n (except for tail calls, which do not count on the stack).

When there are no errors, lua_getstack returns 1; when
called with a level greater than the stack depth, it returns 0.

lua_getupvalue

[-0, +(0|1), -]
const char *lua_getupvalue (lua_State *L, int
funcindex, int n);
Gets information about a closure's upvalue. (For Lua
functions, upvalues are the external local variables that the
function uses, and that are consequently included in its
closure.) lua_getupvalue gets the index n of an upvalue,
pushes the upvalue's value onto the stack, and returns its
name. funcindex points to the closure in the stack.
(Upvalues have no particular order, as they are active
through the whole function. So, they are numbered in an
arbitrary order.)

Returns NULL (and pushes nothing) when the index is greater
than the number of upvalues. For C functions, this function
uses the empty string "" as a name for all upvalues.

lua_Hook

typedef void (*lua_Hook) (lua_State *L, lua_Debug
*ar);
Type for debugging hook functions.

Whenever a hook is called, its ar argument has its field
event set to the specific event that triggered the hook. Lua
identifies these events with the following constants:
LUA_HOOKCALL, LUA_HOOKRET, LUA_HOOKTAILCALL, LUA_HOOKLINE,

and LUA_HOOKCOUNT. Moreover, for line events, the field
currentline is also set. To get the value of any other field in
ar, the hook must call lua_getinfo.

For call events, event can be LUA_HOOKCALL, the normal
value, or LUA_HOOKTAILCALL, for a tail call; in this case, there
will be no corresponding return event.

While Lua is running a hook, it disables other calls to hooks.
Therefore, if a hook calls back Lua to execute a function or a
chunk, this execution occurs without any calls to hooks.

lua_sethook

[-0, +0, -]
int lua_sethook (lua_State *L, lua_Hook f, int
mask, int count);
Sets the debugging hook function.

Argument f is the hook function. mask specifies on which
events the hook will be called: it is formed by a bitwise or of
the constants LUA_MASKCALL, LUA_MASKRET, LUA_MASKLINE, and
LUA_MASKCOUNT. The count argument is only meaningful when
the mask includes LUA_MASKCOUNT. For each event, the hook
is called as explained below:

• The call hook: is called when the interpreter calls a
function. The hook is called just after Lua enters the
new function, before the function gets its arguments.

• The return hook: is called when the interpreter returns
from a function. The hook is called just before Lua
leaves the function. There is no standard way to access
the values to be returned by the function.

• The line hook: is called when the interpreter is about to
start the execution of a new line of code, or when it
jumps back in the code (even to the same line). (This
event only happens while Lua is executing a Lua
function.)

• The count hook: is called after the interpreter executes
every count instructions. (This event only happens
while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.

lua_setlocal

[-(0|1), +0, -]
const char *lua_setlocal (lua_State *L, lua_Debug
*ar, int n);
Sets the value of a local variable of a given activation record.
Parameters ar and n are as in lua_getlocal (see
lua_getlocal). lua_setlocal assigns the value at the top of
the stack to the variable and returns its name. It also pops
the value from the stack.

Returns NULL (and pops nothing) when the index is greater
than the number of active local variables.

lua_setupvalue

[-(0|1), +0, -]
const char *lua_setupvalue (lua_State *L, int
funcindex, int n);
Sets the value of a closure's upvalue. It assigns the value at
the top of the stack to the upvalue and returns its name. It

also pops the value from the stack. Parameters funcindex
and n are as in the lua_getupvalue (see lua_getupvalue).

Returns NULL (and pops nothing) when the index is greater
than the number of upvalues.

lua_upvalueid

[-0, +0, -]
void *lua_upvalueid (lua_State *L, int funcindex,
int n);
Returns an unique identifier for the upvalue numbered n from
the closure at index fidx. Parameters funcindex and n are
as in the lua_getupvalue (see lua_getupvalue) (but n cannot
be greater than the number of upvalues).

These unique identifiers allow a program to check whether
different closures share upvalues. Lua closures that share an
upvalue (that is, that access a same external local variable)
will return identical ids for those upvalue indices.

lua_upvaluejoin

void lua_upvaluejoin (lua_State *L, int fidx1, int
n1,
 int fidx2, int
n2);
Make the n1-th upvalue of the Lua closure at index fidx1
refer to the n2-th upvalue of the Lua closure at index fidx2.

5 – The Auxiliary Library

The auxiliary library provides several convenient functions to
interface C with Lua. While the basic API provides the
primitive functions for all interactions between C and Lua, the
auxiliary library provides higher-level functions for some
common tasks.

All functions from the auxiliary library are defined in header
file lauxlib.h and have a prefix luaL_.

All functions in the auxiliary library are built on top of the
basic API, and so they provide nothing that cannot be done
with that API.

Several functions in the auxiliary library use internally some
extra stack slots. When a function in the auxiliary library uses
less than five slots, it does not check the stack size; it simply
assumes that there are enough slots.

Several functions in the auxiliary library are used to check
C function arguments. Because the error message is
formatted for arguments (e.g., "bad argument #1"), you
should not use these functions for other stack values.

Functions called luaL_check* always throw an error if the
check is not satisfied.

5.1 – Functions and Types
Here we list all functions and types from the auxiliary library
in alphabetical order.

luaL_addchar

[-?, +?, m]
void luaL_addchar (luaL_Buffer *B, char c);
Adds the character c to the buffer B (see luaL_Buffer).

luaL_addlstring

[-?, +?, m]
void luaL_addlstring (luaL_Buffer *B, const char
*s, size_t l);
Adds the string pointed to by s with length l to the buffer B
(see luaL_Buffer). The string can contain embedded zeros.

luaL_addsize

[-?, +?, m]
void luaL_addsize (luaL_Buffer *B, size_t n);
Adds to the buffer B (see luaL_Buffer) a string of length n
previously copied to the buffer area (see luaL_prepbuffer).

luaL_addstring

[-?, +?, m]
void luaL_addstring (luaL_Buffer *B, const char
*s);
Adds the zero-terminated string pointed to by s to the buffer
B (see luaL_Buffer). The string should not contain
embedded zeros.

luaL_addvalue

[-1, +?, m]
void luaL_addvalue (luaL_Buffer *B);
Adds the value at the top of the stack to the buffer B (see
luaL_Buffer). Pops the value.

This is the only function on string buffers that can (and must)
be called with an extra element on the stack, which is the
value to be added to the buffer.

luaL_argcheck

[-0, +0, v]
void luaL_argcheck (lua_State *L,
 int cond,
 int narg,
 const char *extramsg);
Checks whether cond is true. If not, raises an error with the
following message, where func is retrieved from the call
stack:

 bad argument #<narg> to <func> (<extramsg>)

luaL_argerror

[-0, +0, v]
int luaL_argerror (lua_State *L, int narg, const
char *extramsg);
Raises an error with the following message, where func is
retrieved from the call stack:

 bad argument #<narg> to <func> (<extramsg>)
This function never returns, but it is an idiom to use it in
C functions as return luaL_argerror(args).

luaL_Buffer

typedef struct luaL_Buffer luaL_Buffer;
Type for a string buffer.

A string buffer allows C code to build Lua strings piecemeal.
Its pattern of use is as follows:

• First you declare a variable b of type luaL_Buffer.
• Then you initialize it with a call luaL_buffinit(L, &b).
• Then you add string pieces to the buffer calling any of the

luaL_add* functions.
• You finish by calling luaL_pushresult(&b). This call leaves

the final string on the top of the stack.
If you know beforehand the total size of the resulting string,
you can use the buffer like this:

• First you declare a variable b of type luaL_Buffer.
• Then you initialize it and preallocate a space of size sz with

a call luaL_buffinitsize(L, &b, sz).
• Then you copy the string into that space.
• You finish by calling luaL_pushresult(&b, sz), where sz is

the total size of the resulting string copied into that
space.

During its normal operation, a string buffer uses a variable
number of stack slots. So, while using a buffer, you cannot
assume that you know where the top of the stack is. You can
use the stack between successive calls to buffer operations
as long as that use is balanced; that is, when you call a
buffer operation, the stack is at the same level it was
immediately after the previous buffer operation. (The only
exception to this rule is luaL_addvalue.) After calling

luaL_pushresult the stack is back to its level when the buffer
was initialized, plus the final string on its top.

luaL_buffinit

[-0, +0, -]
void luaL_buffinit (lua_State *L, luaL_Buffer *B);
Initializes a buffer B. This function does not allocate any
space; the buffer must be declared as a variable (see
luaL_Buffer).

luaL_buffinitsize

[-?, +?, m]
char *luaL_buffinitsize (lua_State *L, luaL_Buffer
*B, size_t sz);
Equivalent to the sequence luaL_buffinit,
luaL_prepbuffsize.

luaL_callmeta

[-0, +(0|1), e]
int luaL_callmeta (lua_State *L, int obj, const
char *e);
Calls a metamethod.

If the object at index obj has a metatable and this metatable
has a field e, this function calls this field and passes the
object as its only argument. In this case this function returns
true and pushes onto the stack the value returned by the

call. If there is no metatable or no metamethod, this function
returns false (without pushing any value on the stack).

luaL_checkany

[-0, +0, v]
void luaL_checkany (lua_State *L, int narg);
Checks whether the function has an argument of any type
(including nil) at position narg.

luaL_checkint

[-0, +0, v]
int luaL_checkint (lua_State *L, int narg);
Checks whether the function argument narg is a number and
returns this number cast to an int.

luaL_checkinteger

[-0, +0, v]
lua_Integer luaL_checkinteger (lua_State *L, int
narg);
Checks whether the function argument narg is a number and
returns this number cast to a lua_Integer.

luaL_checklong

[-0, +0, v]
long luaL_checklong (lua_State *L, int narg);

Checks whether the function argument narg is a number and
returns this number cast to a long.

luaL_checklstring

[-0, +0, v]
const char *luaL_checklstring (lua_State *L, int
narg, size_t *l);
Checks whether the function argument narg is a string and
returns this string; if l is not NULL fills *l with the string's
length.

This function uses lua_tolstring to get its result, so all
conversions and caveats of that function apply here.

luaL_checknumber

[-0, +0, v]
lua_Number luaL_checknumber (lua_State *L, int
narg);
Checks whether the function argument narg is a number and
returns this number.

luaL_checkoption

[-0, +0, v]
int luaL_checkoption (lua_State *L,
 int narg,
 const char *def,
 const char *const lst[]);
Checks whether the function argument narg is a string and

searches for this string in the array lst (which must be
NULL-terminated). Returns the index in the array where the
string was found. Raises an error if the argument is not a
string or if the string cannot be found.

If def is not NULL, the function uses def as a default value
when there is no argument narg or if this argument is nil.

This is a useful function for mapping strings to C enums.
(The usual convention in Lua libraries is to use strings
instead of numbers to select options.)

luaL_checkstack

[-0, +0, v]
void luaL_checkstack (lua_State *L, int sz, const
char *msg);
Grows the stack size to top + sz elements, raising an error if
the stack cannot grow to that size. msg is an additional text to
go into the error message (or NULL for no additional text).

luaL_checkstring

[-0, +0, v]
const char *luaL_checkstring (lua_State *L, int
narg);
Checks whether the function argument narg is a string and
returns this string.

This function uses lua_tolstring to get its result, so all
conversions and caveats of that function apply here.

luaL_checktype

[-0, +0, v]
void luaL_checktype (lua_State *L, int narg, int
t);
Checks whether the function argument narg has type t. See
lua_type for the encoding of types for t.

luaL_checkudata

[-0, +0, v]
void *luaL_checkudata (lua_State *L, int narg,
const char *tname);
Checks whether the function argument narg is a userdata of
the type tname (see luaL_newmetatable) and returns the
userdata address (see lua_touserdata).

luaL_checkunsigned

[-0, +0, v]
lua_Unsigned luaL_checkunsigned (lua_State *L, int
narg);
Checks whether the function argument narg is a number and
returns this number cast to a lua_Unsigned.

luaL_checkversion

[-0, +0, -]
void luaL_checkversion (lua_State *L);

Checks whether the core running the call, the core that
created the Lua state, and the code making the call are all
using the same version of Lua. Also checks whether the core
running the call and the core that created the Lua state are
using the same address space.

luaL_dofile

[-0, +?, m]
int luaL_dofile (lua_State *L, const char
*filename);
Loads and runs the given file. It is defined as the following
macro:

 (luaL_loadfile(L, filename) || lua_pcall(L, 0,
LUA_MULTRET, 0))
It returns false if there are no errors or true in case of errors.

luaL_dostring

[-0, +?, -]
int luaL_dostring (lua_State *L, const char *str);
Loads and runs the given string. It is defined as the following
macro:

 (luaL_loadstring(L, str) || lua_pcall(L, 0,
LUA_MULTRET, 0))
It returns false if there are no errors or true in case of errors.

luaL_error

[-0, +0, v]
int luaL_error (lua_State *L, const char *fmt,
...);
Raises an error. The error message format is given by fmt
plus any extra arguments, following the same rules of
lua_pushfstring. It also adds at the beginning of the
message the file name and the line number where the error
occurred, if this information is available.

This function never returns, but it is an idiom to use it in
C functions as return luaL_error(args).

luaL_execresult

[-0, +3, m]
int luaL_execresult (lua_State *L, int stat);
This function produces the return values for process-related
functions in the standard library (os.execute and io.close).

luaL_fileresult

[-0, +(1|3), m]
int luaL_fileresult (lua_State *L, int stat, const
char *fname);
This function produces the return values for file-related
functions in the standard library (io.open, os.rename,
file:seek, etc.).

luaL_getmetafield

[-0, +(0|1), m]
int luaL_getmetafield (lua_State *L, int obj, const
char *e);
Pushes onto the stack the field e from the metatable of the
object at index obj. If the object does not have a metatable,
or if the metatable does not have this field, returns false and
pushes nothing.

luaL_getmetatable

[-0, +1, -]
void luaL_getmetatable (lua_State *L, const char
*tname);
Pushes onto the stack the metatable associated with name
tname in the registry (see luaL_newmetatable).

luaL_getsubtable

[-0, +1, m]
int luaL_getsubtable (lua_State *L, int idx, const
char *fname);
Ensures that the value t[fname], where t is the value at the
valid index idx, is a table, and pushes that table onto the
stack. Returns true if it finds a previous table there and false
if it creates a new table.

luaL_gsub

[-0, +1, m]
const char *luaL_gsub (lua_State *L,
 const char *s,

 const char *p,
 const char *r);
Creates a copy of string s by replacing any occurrence of the
string p with the string r. Pushes the resulting string on the
stack and returns it.

luaL_len

[-0, +1, e]
int luaL_len (lua_State *L, int index);
Returns the "length" of the value at the given acceptable
index as a number; it is equivalent to the '#' operator in Lua
(see §3.4.6). Raises an error if the result of the operation is
not a number. (This only can happen through metamethods.)

luaL_loadbuffer

[-0, +1, -]
int luaL_loadbuffer (lua_State *L,
 const char *buff,
 size_t sz,
 const char *name);
Loads a buffer as a Lua chunk. This function uses lua_load
to load the chunk in the buffer pointed to by buff with size
sz.

This function returns the same results as lua_load. name is
the chunk name, used for debug information and error
messages.

luaL_loadfile

[-0, +1, m]
int luaL_loadfile (lua_State *L, const char
*filename);
Loads a file as a Lua chunk. This function uses lua_load to
load the chunk in the file named filename. If filename is
NULL, then it loads from the standard input. The first line in
the file is ignored if it starts with a #.

This function returns the same results as lua_load, but it has
an extra error code LUA_ERRFILE if it cannot open/read the
file.

As lua_load, this function only loads the chunk; it does not
run it.

luaL_loadstring

[-0, +1, -]
int luaL_loadstring (lua_State *L, const char *s);
Loads a string as a Lua chunk. This function uses lua_load
to load the chunk in the zero-terminated string s.

This function returns the same results as lua_load.

Also as lua_load, this function only loads the chunk; it does
not run it.

luaL_newlib

[-0, +1, m]
int luaL_newlib (lua_State *L, const luaL_Reg *l);
Creates a new table and registers there the functions in list

l. It is implemented as the following macro:

 (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))

luaL_newlibtable

[-0, +1, m]
int luaL_newlibtable (lua_State *L, const luaL_Reg
l[]);
Creates a new table with a size optimized to store all entries
in the array l (but does not actually store them). It is
intended to be used in conjunction with luaL_setfuncs (see
luaL_newlib).

It is implemented as a macro. The array l must be the actual
array, not a pointer to it.

luaL_newmetatable

[-0, +1, m]
int luaL_newmetatable (lua_State *L, const char
*tname);
If the registry already has the key tname, returns 0.
Otherwise, creates a new table to be used as a metatable for
userdata, adds it to the registry with key tname, and returns
1.

In both cases pushes onto the stack the final value
associated with tname in the registry.

luaL_newstate

[-0, +0, -]
lua_State *luaL_newstate (void);
Creates a new Lua state. It calls lua_newstate with an
allocator based on the standard C realloc function and then
sets a panic function (see §4.6) that prints an error message
to the standard error output in case of fatal errors.

Returns the new state, or NULL if there is a memory allocation
error.

luaL_openlibs

[-0, +0, e]
void luaL_openlibs (lua_State *L);
Opens all standard Lua libraries into the given state.

luaL_optint

[-0, +0, v]
int luaL_optint (lua_State *L, int narg, int d);
If the function argument narg is a number, returns this
number cast to an int. If this argument is absent or is nil,
returns d. Otherwise, raises an error.

luaL_optinteger

[-0, +0, v]
lua_Integer luaL_optinteger (lua_State *L,
 int narg,
 lua_Integer d);

If the function argument narg is a number, returns this
number cast to a lua_Integer. If this argument is absent or is
nil, returns d. Otherwise, raises an error.

luaL_optlong

[-0, +0, v]
long luaL_optlong (lua_State *L, int narg, long d);
If the function argument narg is a number, returns this
number cast to a long. If this argument is absent or is nil,
returns d. Otherwise, raises an error.

luaL_optlstring

[-0, +0, v]
const char *luaL_optlstring (lua_State *L,
 int narg,
 const char *d,
 size_t *l);
If the function argument narg is a string, returns this string. If
this argument is absent or is nil, returns d. Otherwise, raises
an error.

If l is not NULL, fills the position *l with the result's length.

luaL_optnumber

[-0, +0, v]
lua_Number luaL_optnumber (lua_State *L, int narg,
lua_Number d);
If the function argument narg is a number, returns this

number. If this argument is absent or is nil, returns d.
Otherwise, raises an error.

luaL_optstring

[-0, +0, v]
const char *luaL_optstring (lua_State *L,
 int narg,
 const char *d);
If the function argument narg is a string, returns this string. If
this argument is absent or is nil, returns d. Otherwise, raises
an error.

luaL_optunsigned

[-0, +0, v]
lua_Unsigned luaL_optunsigned (lua_State *L,
 int narg,
 lua_Unsigned u);
If the function argument narg is a number, returns this
number cast to a lua_Unsigned. If this argument is absent or
is nil, returns u. Otherwise, raises an error.

luaL_prepbuffer

[-?, +?, m]
char *luaL_prepbuffer (luaL_Buffer *B);
Equivalent to luaL_prepbuffsize with the predefined size
LUAL_BUFFERSIZE.

luaL_prepbuffsize

[-?, +?, m]
char *luaL_prepbuffsize (luaL_Buffer *B, size_t
sz);
Returns an address to a space of size sz where you can
copy a string to be added to buffer B (see luaL_Buffer). After
copying the string into this space you must call luaL_addsize
with the size of the string to actually add it to the buffer.

luaL_pushresult

[-?, +1, m]
void luaL_pushresult (luaL_Buffer *B);
Finishes the use of buffer B leaving the final string on the top
of the stack.

luaL_pushresultsize

[-?, +1, m]
void luaL_pushresultsize (luaL_Buffer *B, size_t
sz);
Equivalent to the sequence luaL_addsize, luaL_pushresult.

luaL_ref

[-1, +0, m]
int luaL_ref (lua_State *L, int t);
Creates and returns a reference, in the table at index t, for
the object at the top of the stack (and pops the object).

A reference is a unique integer key. As long as you do not
manually add integer keys into table t, luaL_ref ensures the
uniqueness of the key it returns. You can retrieve an object
referred by reference r by calling lua_rawgeti(L, t, r).
Function luaL_unref frees a reference and its associated
object.

If the object at the top of the stack is nil, luaL_ref returns the
constant LUA_REFNIL. The constant LUA_NOREF is guaranteed
to be different from any reference returned by luaL_ref.

luaL_Reg

typedef struct luaL_Reg {
 const char *name;
 lua_CFunction func;
} luaL_Reg;
Type for arrays of functions to be registered by
luaL_setfuncs. name is the function name and func is a
pointer to the function. Any array of luaL_Reg must end with
an sentinel entry in which both name and func are NULL.

luaL_requiref

[-0, +1, e]
void luaL_requiref (lua_State *L, const char
*modname,
 lua_CFunction openf, int glb);
Calls function openf with string modname as an argument and
sets the call result in package.loaded[modname], as if that
function has been called through require.

If glb is true, also stores the result into global modname.

Leaves a copy of that result on the stack.

luaL_setfuncs

[-nup, +0, e]
void luaL_setfuncs (lua_State *L, const luaL_Reg
*l, int nup);
Registers all functions in the array l (see luaL_Reg) into the
table on the top of the stack (below optional upvalues, see
next).

When nup is not zero, all functions are created sharing nup
upvalues, which must be previously pushed on the stack on
top of the library table. These values are popped from the
stack after the registration.

luaL_setmetatable

[-0, +0, -]
void luaL_setmetatable (lua_State *L, const char
*tname);
Sets the metatable of the object at the top of the stack as the
metatable associated with name tname in the registry (see
luaL_newmetatable).

luaL_testudata

[-0, +0, m]

void *luaL_testudata (lua_State *L, int narg, const
char *tname);
This function works like luaL_checkudata, except that, when
the test fails, it returns NULL instead of throwing an error.

luaL_tolstring

[-0, +1, e]
const char *luaL_tolstring (lua_State *L, int idx,
size_t *len);
Converts any Lua value at the given acceptable index to a
C string in a reasonable format. The resulting string is
pushed onto the stack and also returned by the function. If
len is not NULL, the function also sets *len with the string
length.

If the value has a metatable with a "__tostring" field, then
luaL_tolstring calls the corresponding metamethod with the
value as argument, and uses the result of the call as its
result.

luaL_traceback

[-0, +1, m]
void luaL_traceback (lua_State *L, lua_State *L1,
const char *msg,
 int level);
Creates and pushes a traceback of the stack L1. If msg is not
NULL it is appended at the beginning of the traceback. The
level parameter tells at which level to start the traceback.

luaL_typename

[-0, +0, -]
const char *luaL_typename (lua_State *L, int
index);
Returns the name of the type of the value at the given index.

luaL_unref

[-0, +0, -]
void luaL_unref (lua_State *L, int t, int ref);
Releases reference ref from the table at index t (see
luaL_ref). The entry is removed from the table, so that the
referred object can be collected. The reference ref is also
freed to be used again.

If ref is LUA_NOREF or LUA_REFNIL, luaL_unref does nothing.

luaL_where

[-0, +1, m]
void luaL_where (lua_State *L, int lvl);
Pushes onto the stack a string identifying the current position
of the control at level lvl in the call stack. Typically this
string has the following format:

 chunkname:currentline:
Level 0 is the running function, level 1 is the function that
called the running function, etc.

This function is used to build a prefix for error messages.

6 – Standard Libraries
The standard Lua libraries provide useful functions that are
implemented directly through the C API. Some of these
functions provide essential services to the language (e.g.,
type and getmetatable); others provide access to "outside"
services (e.g., I/O); and others could be implemented in Lua
itself, but are quite useful or have critical performance
requirements that deserve an implementation in C (e.g.,
table.sort).

All libraries are implemented through the official C API and
are provided as separate C modules. Currently, Lua has the
following standard libraries:

• basic library;
• package library;
• coroutine library;
• string manipulation;
• table manipulation;
• mathematical functions (sin, log, etc.);
• bitwise operations;
• input and output;
• operating system facilities;
• debug facilities.
Except for the basic and package libraries, each library
provides all its functions as fields of a global table or as
methods of its objects.

To have access to these libraries, the C host program should
call the luaL_openlibs function, which opens all standard
libraries. Alternatively, it can open them individually by
calling luaopen_base (for the basic library), luaopen_package

(for the package library), luaopen_coroutine (for the
coroutine library), luaopen_string (for the string library),
luaopen_table (for the table library), luaopen_math (for the
mathematical library), luaopen_bitlib (for the bit library),
luaopen_io (for the I/O library), luaopen_os (for the Operating
System library), and luaopen_debug (for the debug library).
These functions are declared in lualib.h and should not be
called directly: you must call them like any other Lua
C function, e.g., by using lua_call.

6.1 – Basic Functions
The basic library provides some core functions to Lua. If you
do not include this library in your application, you should
check carefully whether you need to provide
implementations for some of its facilities.

assert (v [, message])

Issues an error when the value of its argument v is false (i.e.,
nil or false); otherwise, returns all its arguments. message is
an error message; when absent, it defaults to "assertion
failed!"

collectgarbage ([opt [, arg]])

This function is a generic interface to the garbage collector. It
performs different functions according to its first argument,

opt:

• "collect": performs a full garbage-collection cycle. This is
the default option.

• "stop": stops automatic invocation of the garbage collector.
The collector will run only when explcitly invoked, until a
call to restart it.

• "restart": restarts automatic invocation the garbage
collector.

• "count": returns the total memory in use by Lua (in Kbytes)
and a second value with the total memory in bytes
modulo 1024. The first value has a fractional part, so
the following equality is always true: k, b =
collectgarbage("count")

• assert(k*1024 == math.floor(k)*1024 + b)
•  (The second result is useful when Lua is compiled with a

non floating-point type for numbers.)
• "step": performs a garbage-collection step. The step "size"

is controlled by arg (larger values mean more steps) in
a non-specified way. If you want to control the step size
you must experimentally tune the value of arg. Returns
true if the step finished a collection cycle.

• "setpause": sets arg as the new value for the pause of the
collector (see §2.5). Returns the previous value for
pause.

• "setstepmul": sets arg as the new value for the step
multiplier of the collector (see §2.5). Returns the
previous value for step.

• "isrunning": returns a boolean that tells whether the
collector is running (i.e., not stopped).

dofile ([filename])

Opens the named file and executes its contents as a Lua
chunk. When called without arguments, dofile executes the
contents of the standard input (stdin). Returns all values
returned by the chunk. In case of errors, dofile propagates
the error to its caller (that is, dofile does not run in protected
mode).

error (message [, level])

Terminates the last protected function called and returns
message as the error message. Function error never returns.
Usually, error adds some information about the error
position at the beginning of the message, if the message is a
string. The level argument specifies how to get the error
position. With level 1 (the default), the error position is where
the error function was called. Level 2 points the error to
where the function that called error was called; and so on.
Passing a level 0 avoids the addition of error position
information to the message.

_G

A global variable (not a function) that holds the global
environment (see §2.2). Lua itself does not use this variable;
changing its value does not affect any environment, nor vice-
versa.

getmetatable (object)

If object does not have a metatable, returns nil. Otherwise,
if the object's metatable has a "__metatable" field, returns
the associated value. Otherwise, returns the metatable of the
given object.

ipairs (t)

If t has a metamethod __ipairs, calls it with t as argument
and returns the first three results from the call.

Otherwise, returns three values: an iterator function, the
table t, and 0, so that the construction

 for i,v in ipairs(t) do body end
will iterate over the pairs (1,t[1]), (2,t[2]), ···, up to the first
integer key absent from the table.

load (ld [, source [, mode [, env]]])

Loads a chunk.

If ld is a string, the chunk is this string. If ld is a function,
load calls it repeatedly to get the chunk pieces. Each call to
ld must return a string that concatenates with previous
results. A return of an empty string, nil, or no value signals

the end of the chunk.

If there are no errors, returns the compiled chunk as a
function; otherwise, returns nil plus the error message.

If the resulting function has upvalues, the first upvalue is set
to the value of the global environment or to env, if that
parameter is given. (When loading main chunks, the first
upvalue will be the _ENV variable (see §2.2).)

source is used as the source of the chunk for error
messages and debug information (see §4.9). When absent,
it defaults to ld, if ld is a string, or to "=(load)".

The string mode controls whether the chunk can be text or
binary (that is, a precompiled chunk). A letter 't' in mode
allows a text chunk; a letter 'b' allows a binary chunk. The
default is "bt".

loadfile ([filename])

Similar to load, but gets the chunk from file filename or from
the standard input, if no file name is given.

next (table [, index])

Allows a program to traverse all fields of a table. Its first

argument is a table and its second argument is an index in
this table. next returns the next index of the table and its
associated value. When called with nil as its second
argument, next returns an initial index and its associated
value. When called with the last index, or with nil in an
empty table, next returns nil. If the second argument is
absent, then it is interpreted as nil. In particular, you can use
next(t) to check whether a table is empty.

The order in which the indices are enumerated is not
specified, even for numeric indices. (To traverse a table in
numeric order, use a numerical for.)

The behavior of next is undefined if, during the traversal, you
assign any value to a non-existent field in the table. You may
however modify existing fields. In particular, you may clear
existing fields.

pairs (t)

If t has a metamethod __pairs, calls it with t as argument
and returns the first three results from the call.

Otherwise, returns three values: the next function, the table
t, and nil, so that the construction

 for k,v in pairs(t) do body end
will iterate over all key–value pairs of table t.

See function next for the caveats of modifying the table
during its traversal.

pcall (f [, arg1, ···])

Calls function f with the given arguments in protected mode.
This means that any error inside f is not propagated;
instead, pcall catches the error and returns a status code.
Its first result is the status code (a boolean), which is true if
the call succeeds without errors. In such case, pcall also
returns all results from the call, after this first result. In case
of any error, pcall returns false plus the error message.

print (···)

Receives any number of arguments, and prints their values
to stdout, using the tostring function to convert them to
strings. print is not intended for formatted output, but only
as a quick way to show a value, typically for debugging. For
formatted output, use string.format.

rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any
metamethod. Returns a boolean.

rawget (table, index)

Gets the real value of table[index], without invoking any
metamethod. table must be a table; index may be any
value.

rawlen (v)

Returns the length of the object v, which must be a table or a
string, without invoking any metamethod. Returns an integer
number.

rawset (table, index, value)

Sets the real value of table[index] to value, without invoking
any metamethod. table must be a table, index any value
different from nil, and value any Lua value.
This function returns table.

select (index, ···)

If index is a number, returns all arguments after argument
number index; a negative number indexes from the end (-1
is the last argument). Otherwise, index must be the string
"#", and select returns the total number of extra arguments
it received.

setmetatable (table, metatable)

Sets the metatable for the given table. (You cannot change
the metatable of other types from Lua, only from C.) If
metatable is nil, removes the metatable of the given table. If
the original metatable has a "__metatable" field, raises an
error.

This function returns table.

tonumber (e [, base])

Tries to convert its argument to a number. If the argument is
already a number or a string convertible to a number, then
tonumber returns this number; otherwise, it returns nil.
An optional argument specifies the base to interpret the
numeral. The base may be any integer between 2 and 36,
inclusive. In bases above 10, the letter 'A' (in either upper or
lower case) represents 10, 'B' represents 11, and so forth,
with 'Z' representing 35. In base 10 (the default), the numeral
is converted following the coercion rules (see §3.4.2). In
other bases, only integers are accepted.

tostring (e)

Receives an argument of any type and converts it to a string
in a reasonable format. For complete control of how numbers

are converted, use string.format.
If the metatable of e has a "__tostring" field, then tostring
calls the corresponding value with e as argument, and uses
the result of the call as its result.

type (v)

Returns the type of its only argument, coded as a string. The
possible results of this function are "nil" (a string, not the
value nil), "number", "string", "boolean", "table", "function",
"thread", and "userdata".

_VERSION

A global variable (not a function) that holds a string
containing the current interpreter version. The current
contents of this variable is "Lua 5.2".

xpcall (f, msgh [, arg1, ···])

This function is similar to pcall, except that it sets a new
message handler msgh.

6.2 – Coroutine Manipulation
The operations related to coroutines comprise a sub-library
of the basic library and come inside the table coroutine. See
§2.6 for a general description of coroutines.

coroutine.create (f)

Creates a new coroutine, with body f. f must be a Lua
function. Returns this new coroutine, an object with type
"thread".

coroutine.resume (co [, val1, ···])

Starts or continues the execution of coroutine co. The first
time you resume a coroutine, it starts running its body. The
values val1, ··· are passed as the arguments to the body
function. If the coroutine has yielded, resume restarts it; the
values val1, ··· are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true
plus any values passed to yield (if the coroutine yields) or
any values returned by the body function (if the coroutine
terminates). If there is any error, resume returns false plus
the error message.

coroutine.running ()

Returns the running coroutine plus a boolean, true when the
running coroutine is the main one.

coroutine.status (co)

Returns the status of coroutine co, as a string: "running", if
the coroutine is running (that is, it called status);
"suspended", if the coroutine is suspended in a call to yield,
or if it has not started running yet; "normal" if the coroutine is
active but not running (that is, it has resumed another
coroutine); and "dead" if the coroutine has finished its body
function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a Lua
function. Returns a function that resumes the coroutine each
time it is called. Any arguments passed to the function
behave as the extra arguments to resume. Returns the same
values returned by resume, except the first boolean. In case
of error, propagates the error.

coroutine.yield (···)

Suspends the execution of the calling coroutine. Any
arguments to yield are passed as extra results to resume.

6.3 – Modules
The package library provides basic facilities for loading
modules in Lua. It exports one function directly in the global
environment: require. Everything else is exported in a table
package.

require (modname)

Loads the given module. The function starts by looking into
the package.loaded table to determine whether modname is
already loaded. If it is, then require returns the value stored
at package.loaded[modname]. Otherwise, it tries to find a
loader for the module.

To find a loader, require is guided by the package.searchers
sequence. By changing this sequence, we can change how
require looks for a module. The following explanation is
based on the default configuration for package.searchers.

First require queries package.preload[modname]. If it has a
value, this value (which should be a function) is the loader.
Otherwise require searches for a Lua loader using the path
stored in package.path. If that also fails, it searches for a
C loader using the path stored in package.cpath. If that also
fails, it tries an all-in-one loader (see package.searchers).

Once a loader is found, require calls the loader with two
arguments: modname and an extra value dependent on how it
got the loader. (If the loader came from a file, this extra value

is the file name.) If the loader returns any non-nil value,
require assigns the returned value to
package.loaded[modname]. If the loader does not return a
non-nil value and has not assigned any value to
package.loaded[modname], then require assigns true to this
entry. In any case, require returns the final value of
package.loaded[modname].

If there is any error loading or running the module, or if it
cannot find any loader for the module, then require signals
an error.

package.config

A string describing some compile-time configurations for
packages. This string is a sequence of lines:

• The first line is the directory separator string. Default is '\'
for Windows and '/' for all other systems.

• The second line is the character that separates templates
in a path. Default is ';'.

• The third line is the string that marks the substitution points
in a template. Default is '?'.

• The fourth line is a string that, in a path in Windows, is
replaced by the executable's directory. Default is '!'.

• The fifth line is a mark to ignore all before it when building
the luaopen_ function name. Default is '-'.

package.cpath

The path used by require to search for a C loader.

Lua initializes the C path package.cpath in the same way it
initializes the Lua path package.path, using the environment
variable LUA_CPATH_5_2 or the environment variable
LUA_CPATH or a default path defined in luaconf.h.

package.loaded

A table used by require to control which modules are
already loaded. When you require a module modname and
package.loaded[modname] is not false, require simply returns
the value stored there.

This variable is only a reference to the real table;
assignments to this variable do not change the table used by
require.

package.loadlib (libname, funcname)

Dynamically links the host program with the C library
libname.

If funcname is "*", then it only links with the library, making
the symbols exported by the library available to other

dynamically linked libraries. Otherwise, it looks for a function
funcname inside the library and returns this function as a
C function. (So, funcname must follow the protocol (see
lua_CFunction)).

This is a low-level function. It completely bypasses the
package and module system. Unlike require, it does not
perform any path searching and does not automatically adds
extensions. libname must be the complete file name of the
C library, including if necessary a path and an extension.
funcname must be the exact name exported by the C library
(which may depend on the C compiler and linker used).

This function is not supported by Standard C. As such, it is
only available on some platforms (Windows, Linux, Mac OS
X, Solaris, BSD, plus other Unix systems that support the
dlfcn standard).

package.path

The path used by require to search for a Lua loader.

At start-up, Lua initializes this variable with the value of the
environment variable LUA_PATH_5_2 or the environment
variable LUA_PATH or with a default path defined in luaconf.h,
if the environment variable is not defined. Any ";;" in the
value of the environment variable is replaced by the default
path.

package.preload

A table to store loaders for specific modules (see require).

This variable is only a reference to the real table;
assignments to this variable do not change the table used by
require.

package.searchers

A table used by require to control how to load modules.

Each entry in this table is a searcher function. When looking
for a module, require calls each of these searchers in
ascending order, with the module name (the argument given
to require) as its sole parameter. The function can return
another function (the module loader) plus an extra value that
will be passed to that loader, or a string explaining why it did
not find that module (or nil if it has nothing to say).

Lua initializes this table with four searcher functions.

The first searcher simply looks for a loader in the
package.preload table.

The second searcher looks for a loader as a Lua library,
using the path stored at package.path. The search is done as
described in function package.searchpath.

The third searcher looks for a loader as a C library, using the
path given by the variable package.cpath. Again, the search
is done as described in function package.searchpath. For
instance, if the C path is the string

 "./?.so;./?.dll;/usr/local/?/init.so"
the searcher for module foo will try to open the files
./foo.so, ./foo.dll, and /usr/local/foo/init.so, in that
order. Once it finds a C library, this searcher first uses a
dynamic link facility to link the application with the library.
Then it tries to find a C function inside the library to be used
as the loader. The name of this C function is the string
"luaopen_" concatenated with a copy of the module name
where each dot is replaced by an underscore. Moreover, if
the module name has a hyphen, its prefix up to (and
including) the first hyphen is removed. For instance, if the
module name is a.v1-b.c, the function name will be
luaopen_b_c.

The fourth searcher tries an all-in-one loader. It searches the
C path for a library for the root name of the given module.
For instance, when requiring a.b.c, it will search for a
C library for a. If found, it looks into it for an open function for
the submodule; in our example, that would be
luaopen_a_b_c. With this facility, a package can pack several
C submodules into one single library, with each submodule
keeping its original open function.

All searchers except the first (preload) return as the extra
value the file name where the module was found, as
returned by package.searchpath. The first searcher returns
no extra value.

package.searchpath (name, path [, sep])

Searches for the given name in the given path.

A path is string containing a sequence of templates
separated by semicolons. For each template, the function
changes each interrogation mark in the template by a copy
of name wherein all occurrences of sep (a dot, by default)
were replaced by the system's directory separator, and then
tries to open the resulting file name. If sep is the empty
string, the replacement is not done.

For instance, if the path is the string

 "./?.lua;./?.lc;/usr/local/?/init.lua"
the search for the name foo.a will try to open the files
./foo/a.lua, ./foo/a.lc, and /usr/local/foo/a/init.lua, in
that order.

Returns the resulting name of the first file that it can open in
read mode (after closing the file), or nil plus an error
message if none succeeds. (This error message lists all file
names it tried to open.)

6.4 – String Manipulation
This library provides generic functions for string
manipulation, such as finding and extracting substrings, and
pattern matching. When indexing a string in Lua, the first
character is at position 1 (not at 0, as in C). Indices are
allowed to be negative and are interpreted as indexing
backwards, from the end of the string. Thus, the last

character is at position -1, and so on.

The string library provides all its functions inside the table
string. It also sets a metatable for strings where the __index
field points to the string table. Therefore, you can use the
string functions in object-oriented style. For instance,
string.byte(s, i) can be written as s:byte(i).

The string library assumes one-byte character encodings.

string.byte (s [, i [, j]])

Returns the internal numerical codes of the characters s[i],
s[i+1], ···, s[j]. The default value for i is 1; the default value
for j is i.
Note that numerical codes are not necessarily portable
across platforms.

string.char (···)

Receives zero or more integers. Returns a string with length
equal to the number of arguments, in which each character
has the internal numerical code equal to its corresponding
argument.
Note that numerical codes are not necessarily portable
across platforms.

string.dump (function)

Returns a string containing a binary representation of the
given function, so that a later load on this string returns a
copy of the function (but with new upvalues).

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern in the string s. If it finds a
match, then find returns the indices of s where this
occurrence starts and ends; otherwise, it returns nil. A third,
optional numerical argument init specifies where to start the
search; its default value is 1 and can be negative. A value of
true as a fourth, optional argument plain turns off the
pattern matching facilities, so the function does a plain "find
substring" operation, with no characters in pattern being
considered magic. Note that if plain is given, then init must
be given as well.

If the pattern has captures, then in a successful match the
captured values are also returned, after the two indices.

string.format (formatstring, ···)

Returns a formatted version of its variable number of
arguments following the description given in its first
argument (which must be a string). The format string follows

the same rules as the C function sprintf. The only
differences are that the options/modifiers *, h, L, l, n, and p
are not supported and that there is an extra option, q. The q
option formats a string between double quotes, using escape
sequences when necessary to ensure that it can safely be
read back by the Lua interpreter. For instance, the call

 string.format('%q', 'a string with "quotes"
and \n new line')
may produce the string:

 "a string with \"quotes\" and \
 new line"
Options A and a (when available), E, e, f, G, and g all expect a
number as argument. Options c, d, i, o, u, X, and x expect an
integer as argument; the range of that integer may be limited
by the underlying C implementation. Option q expects a
string; option s expects a string without embedded zeros. If
the argument to option s is not a string, it is converted to one
following the same rules of tostring.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called,
returns the next captures from pattern over string s. If
pattern specifies no captures, then the whole match is
produced in each call.
As an example, the following loop will iterate over all the
words from string s, printing one per line:
 s = "hello world from Lua"
 for w in string.gmatch(s, "%a+") do
 print(w)

 end
The next example collects all pairs key=value from the given
string into a table:

 t = {}
 s = "from=world, to=Lua"
 for k, v in string.gmatch(s, "(%w+)=(%w+)") do
 t[k] = v
 end
For this function, a '^' at the start of a pattern does not work
as an anchor, as this would prevent the iteration.

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given)
occurrences of the pattern have been replaced by a
replacement string specified by repl, which can be a string,
a table, or a function. gsub also returns, as its second value,
the total number of matches that occurred. The name gsub
comes from Global SUBstitution.
If repl is a string, then its value is used for replacement. The
character % works as an escape character: any sequence in
repl of the form %d, with d between 1 and 9, stands for the
value of the d-th captured substring (see below). The
sequence %0 stands for the whole match. The sequence %%
stands for a single %.
If repl is a table, then the table is queried for every match,
using the first capture as the key; if the pattern specifies no
captures, then the whole match is used as the key.
If repl is a function, then this function is called every time a
match occurs, with all captured substrings passed as

arguments, in order; if the pattern specifies no captures, then
the whole match is passed as a sole argument.
If the value returned by the table query or by the function call
is a string or a number, then it is used as the replacement
string; otherwise, if it is false or nil, then there is no
replacement (that is, the original match is kept in the string).
Here are some examples:
 x = string.gsub("hello world", "(%w+)", "%1
%1")
 --> x="hello hello world world"

 x = string.gsub("hello world", "%w+", "%0 %0",
1)
 --> x="hello hello world"

 x = string.gsub("hello world from Lua",
"(%w+)%s*(%w+)", "%2 %1")
 --> x="world hello Lua from"

 x = string.gsub("home = $HOME, user = $USER",
"%$(%w+)", os.getenv)
 --> x="home = /home/roberto, user = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-
)%$", function (s)
 return load(s)()
 end)
 --> x="4+5 = 9"

 local t = {name="lua", version="5.2"}
 x = string.gsub("$name-$version.tar.gz",
"%$(%w+)", t)
 --> x="lua-5.2.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string ""
has length 0. Embedded zeros are counted, so
"a\000bc\000" has length 5.

string.lower (s)

Receives a string and returns a copy of this string with all
uppercase letters changed to lowercase. All other characters
are left unchanged. The definition of what an uppercase
letter is depends on the current locale.

string.match (s, pattern [, init])

Looks for the first match of pattern in the string s. If it finds
one, then match returns the captures from the pattern;
otherwise it returns nil. If pattern specifies no captures, then
the whole match is returned. A third, optional numerical
argument init specifies where to start the search; its default
value is 1 and can be negative.

string.rep (s, n [, sep])

Returns a string that is the concatenation of n copies of the
string s separated by the string sep. The default value for sep
is the empty string (that is, no separator).

string.reverse (s)

Returns a string that is the string s reversed.

string.sub (s, i [, j])

Returns the substring of s that starts at i and continues until
j; i and j can be negative. If j is absent, then it is assumed
to be equal to -1 (which is the same as the string length). In
particular, the call string.sub(s,1,j) returns a prefix of s
with length j, and string.sub(s, -i) returns a suffix of s
with length i.

string.upper (s)

Receives a string and returns a copy of this string with all
lowercase letters changed to uppercase. All other characters
are left unchanged. The definition of what a lowercase letter
is depends on the current locale.
6.4.1 – Patterns
Character Class:

A character class is used to represent a set of characters.
The following combinations are allowed in describing a
character class:

• x: (where x is not one of the magic characters ^$()%.[]*+-
?) represents the character x itself.

• .: (a dot) represents all characters.
• %a: represents all letters.
• %c: represents all control characters.
• %d: represents all digits.

• %g: represents all printable characters except space.
• %l: represents all lowercase letters.
• %p: represents all punctuation characters.
• %s: represents all space characters.
• %u: represents all uppercase letters.
• %w: represents all alphanumeric characters.
• %x: represents all hexadecimal digits.
• %x: (where x is any non-alphanumeric character)

represents the character x. This is the standard way to
escape the magic characters. Any punctuation
character (even the non magic) can be preceded by a
'%' when used to represent itself in a pattern.

• [set]: represents the class which is the union of all
characters in set. A range of characters can be
specified by separating the end characters of the range,
in ascending order, with a '-', All classes %x described
above can also be used as components in set. All other
characters in set represent themselves. For example,
[%w_] (or [_%w]) represents all alphanumeric characters
plus the underscore, [0-7] represents the octal digits,
and [0-7%l%-] represents the octal digits plus the
lowercase letters plus the '-' character. The interaction
between ranges and classes is not defined. Therefore,
patterns like [%a-z] or [a-%%] have no meaning.

• [^set]: represents the complement of set, where set is
interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the
corresponding uppercase letter represents the complement
of the class. For instance, %S represents all non-space
characters.

The definitions of letter, space, and other character groups
depend on the current locale. In particular, the class [a-z]

may not be equivalent to %l.

Pattern Item:

A pattern item can be

• a single character class, which matches any single
character in the class;

• a single character class followed by '*', which matches 0 or
more repetitions of characters in the class. These
repetition items will always match the longest possible
sequence;

• a single character class followed by '+', which matches 1 or
more repetitions of characters in the class. These
repetition items will always match the longest possible
sequence;

• a single character class followed by '-', which also matches
0 or more repetitions of characters in the class. Unlike
'*', these repetition items will always match the shortest
possible sequence;

• a single character class followed by '?', which matches 0 or
1 occurrence of a character in the class;

• %n, for n between 1 and 9; such item matches a substring
equal to the n-th captured string (see below);

• %bxy, where x and y are two distinct characters; such item
matches strings that start with x, end with y, and where
the x and y are balanced. This means that, if one reads
the string from left to right, counting +1 for an x and -1
for a y, the ending y is the first y where the count
reaches 0. For instance, the item %b() matches
expressions with balanced parentheses.

• %f[set], a frontier pattern; such item matches an empty
string at any position such that the next character

belongs to set and the previous character does not
belong to set. The set set is interpreted as previously
described. The beginning and the end of the subject are
handled as if they were the character '\0'.

Pattern:

A pattern is a sequence of pattern items. A '^' at the
beginning of a pattern anchors the match at the beginning of
the subject string. A '$' at the end of a pattern anchors the
match at the end of the subject string. At other positions, '^'
and '$' have no special meaning and represent themselves.

Captures:

A pattern can contain sub-patterns enclosed in parentheses;
they describe captures. When a match succeeds, the
substrings of the subject string that match captures are
stored (captured) for future use. Captures are numbered
according to their left parentheses. For instance, in the
pattern "(a*(.)%w(%s*))", the part of the string matching
"a*(.)%w(%s*)" is stored as the first capture (and therefore
has number 1); the character matching "." is captured with
number 2, and the part matching "%s*" has number 3.

As a special case, the empty capture () captures the current
string position (a number). For instance, if we apply the
pattern "()aa()" on the string "flaaap", there will be two
captures: 3 and 5.

6.5 – Table Manipulation
This library provides generic functions for table manipulation.
It provides all its functions inside the table table.

Remember that, whenever an operation needs the length of
a table, the table should be a proper sequence or have a
__len metamethod (see §3.4.6). All functions ignore non-
numeric keys in tables given as arguments.

For performance reasons, all table accesses (get/set)
performed by these functions are raw.

table.concat (list [, sep [, i [, j]]])

Given a list where all elements are strings or numbers,
returns list[i]..sep..list[i+1] ··· sep..list[j]. The
default value for sep is the empty string, the default for i is 1,
and the default for j is #list. If i is greater than j, returns
the empty string.

table.insert (list, [pos,] value)

Inserts element value at position pos in list, shifting up the
elements list[pos], list[pos+1], ···, list[#list]. The
default value for pos is #list+1, so that a call
table.insert(t,x) inserts x at the end of list t.

table.pack (···)

Returns a new table with all parameters stored into keys 1,
2, etc. and with a field "n" with the total number of
parameters. Also returns, as a second result, the total
number of parameters. Note that the resulting table may not
be a sequence.

table.remove (list [, pos])

Removes from list the element at position pos, shifting
down the elements list[pos+1], list[pos+2], ···,
list[#list] and erasing element list[#list]. Returns the
value of the removed element. The default value for pos is
#list, so that a call table.remove(t) removes the last
element of list t.

table.sort (list [, comp])

Sorts list elements in a given order, in-place, from list[1] to
list[#list]. If comp is given, then it must be a function that
receives two list elements and returns true when the first
element must come before the second in the final order (so
that not comp(list[i+1],list[i]) will be true after the sort).
If comp is not given, then the standard Lua operator < is used
instead.

The sort algorithm is not stable; that is, elements considered
equal by the given order may have their relative positions

changed by the sort.

table.unpack (list [, i [, j]])

Returns the elements from the given table. This function is
equivalent to

 return list[i], list[i+1], ···, list[j]
By default, i is 1 and j is #list.

6.6 – Mathematical Functions
This library is an interface to the standard C math library. It
provides all its functions inside the table math.

math.abs (x)

Returns the absolute value of x.

math.acos (x)

Returns the arc cosine of x (in radians).

math.asin (x)

Returns the arc sine of x (in radians).

math.atan (x)

Returns the arc tangent of x (in radians).

math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the
signs of both parameters to find the quadrant of the result. (It
also handles correctly the case of x being zero.)

math.ceil (x)

Returns the smallest integer larger than or equal to x.

math.cos (x)

Returns the cosine of x (assumed to be in radians).

math.cosh (x)

Returns the hyperbolic cosine of x.

math.deg (x)

Returns the angle x (given in radians) in degrees.

math.exp (x)

Returns the value ex.

math.floor (x)

Returns the largest integer smaller than or equal to x.

math.fmod (x, y)

Returns the remainder of the division of x by y that rounds
the quotient towards zero.

math.frexp (x)

Returns m and e such that x = m2e, e is an integer and the
absolute value of m is in the range [0.5, 1) (or zero when x is
zero).

math.huge

The value HUGE_VAL, a value larger than or equal to any other
numerical value.

math.ldexp (m, e)

Returns m2e (e should be an integer).

math.log (x [, base])

Returns the logarithm of x in the given base. The default for
base is e (so that the function returns the natural logarithm of
x).

math.max (x, ···)

Returns the maximum value among its arguments.

math.min (x, ···)

Returns the minimum value among its arguments.

math.modf (x)

Returns two numbers, the integral part of x and the fractional
part of x.

math.pi

The value of π.

math.pow (x, y)

Returns xy. (You can also use the expression x^y to compute
this value.)

math.rad (x)

Returns the angle x (given in degrees) in radians.

math.random ([m [, n]])

This function is an interface to the simple pseudo-random
generator function rand provided by Standard C. (No
guarantees can be given for its statistical properties.)

When called without arguments, returns a uniform pseudo-
random real number in the range [0,1). When called with an
integer number m, math.random returns a uniform pseudo-
random integer in the range [1, m]. When called with two
integer numbers m and n, math.random returns a uniform
pseudo-random integer in the range [m, n].

math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal
seeds produce equal sequences of numbers.

math.sin (x)

Returns the sine of x (assumed to be in radians).

math.sinh (x)

Returns the hyperbolic sine of x.

math.sqrt (x)

Returns the square root of x. (You can also use the
expression x^0.5 to compute this value.)

math.tan (x)

Returns the tangent of x (assumed to be in radians).

math.tanh (x)

Returns the hyperbolic tangent of x.

6.7 – Bitwise Operations
This library provides bitwise operations. It provides all its
functions inside the table bit32.

Unless otherwise stated, all functions accept numeric
arguments in the range (-251,+251); each argument is
normalized to the remainder of its division by 232 and
truncated to an integer (in some unspecified way), so that its
final value falls in the range [0,232 - 1]. Similarly, all results
are in the range [0,232 - 1]. Note that bit32.bnot(0) is
0xFFFFFFFF, which is different from -1.

bit32.arshift (x, disp)

Returns the number x shifted disp bits to the right. The
number disp may be any representable integer. Negative
displacements shift to the left.

This shift operation is what is called arithmetic shift. Vacant
bits on the left are filled with copies of the higher bit of x;
vacant bits on the right are filled with zeros. In particular,
displacements with absolute values higher than 31 result in
zero or 0xFFFFFFFF (all original bits are shifted out).

bit32.band (···)

Returns the bitwise and of its operands.

bit32.bnot (x)

Returns the bitwise negation of x. For any integer x, the
following identity holds:

 assert(bit32.bnot(x) == (-1 - x) % 2^32)

bit32.bor (···)

Returns the bitwise or of its operands.

bit32.btest (···)

Returns a boolean signaling whether the bitwise and of its
operands is different from zero.

bit32.bxor (···)

Returns the bitwise exclusive or of its operands.

bit32.extract (n, field [, width])

Returns the unsigned number formed by the bits field to
field + width - 1 from n. Bits are numbered from 0 (least
significant) to 31 (most significant). All accessed bits must be
in the range [0, 31].

The default for width is 1.

bit32.replace (n, v, field [, width])

Returns a copy of n with the bits field to field + width - 1
replaced by the value v. See bit32.extract for details about
field and width.

bit32.lrotate (x, disp)

Returns the number x rotated disp bits to the left. The
number disp may be any representable integer.

For any valid displacement, the following identity holds:

 assert(bit32.lrotate(x, disp) ==
bit32.lrotate(x, disp % 32))
In particular, negative displacements rotate to the right.

bit32.lshift (x, disp)

Returns the number x shifted disp bits to the left. The
number disp may be any representable integer. Negative
displacements shift to the right. In any direction, vacant bits
are filled with zeros. In particular, displacements with
absolute values higher than 31 result in zero (all bits are
shifted out).

For positive displacements, the following equality holds:

 assert(bit32.lshift(b, disp) == (b * 2^disp) %
2^32)

bit32.rrotate (x, disp)

Returns the number x rotated disp bits to the right. The
number disp may be any representable integer.

For any valid displacement, the following identity holds:

 assert(bit32.rrotate(x, disp) ==
bit32.rrotate(x, disp % 32))
In particular, negative displacements rotate to the left.

bit32.rshift (x, disp)

Returns the number x shifted disp bits to the right. The
number disp may be any representable integer. Negative
displacements shift to the left. In any direction, vacant bits
are filled with zeros. In particular, displacements with
absolute values higher than 31 result in zero (all bits are
shifted out).

For positive displacements, the following equality holds:

 assert(bit32.rshift(b, disp) == math.floor(b %
2^32 / 2^disp))
This shift operation is what is called logical shift.

6.8 – Input and Output Facilities
The I/O library provides two different styles for file
manipulation. The first one uses implicit file descriptors; that
is, there are operations to set a default input file and a
default output file, and all input/output operations are over
these default files. The second style uses explicit file

descriptors.

When using implicit file descriptors, all operations are
supplied by table io. When using explicit file descriptors, the
operation io.open returns a file descriptor and then all
operations are supplied as methods of the file descriptor.

The table io also provides three predefined file descriptors
with their usual meanings from C: io.stdin, io.stdout, and
io.stderr. The I/O library never closes these files.

Unless otherwise stated, all I/O functions return nil on failure
(plus an error message as a second result and a system-
dependent error code as a third result) and some value
different from nil on success.

io.close ([file])

Equivalent to file:close(). Without a file, closes the
default output file.

io.flush ()

Equivalent to io.output():flush().

io.input ([file])

When called with a file name, it opens the named file (in text
mode), and sets its handle as the default input file. When
called with a file handle, it simply sets this file handle as the
default input file. When called without parameters, it returns
the current default input file.

In case of errors this function raises the error, instead of
returning an error code.

io.lines ([filename] ···)

Opens the given file name in read mode and returns an
iterator function that works like file:lines(···) over the
opened file. When the iterator function detects the end of file,
it returns nil (to finish the loop) and automatically closes the
file.

The call io.lines() (with no file name) is equivalent to
io.input():lines(); that is, it iterates over the lines of the
default input file. In this case it does not close the file when
the loop ends.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string

mode. It returns a new file handle, or, in case of errors, nil
plus an error message.

The mode string can be any of the following:

• "r": read mode (the default);
• "w": write mode;
• "a": append mode;
• "r+": update mode, all previous data is preserved;
• "w+": update mode, all previous data is erased;
• "a+": append update mode, previous data is preserved,

writing is only allowed at the end of file.
The mode string can also have a 'b' at the end, which is
needed in some systems to open the file in binary mode.

io.output ([file])

Similar to io.input, but operates over the default output file.

io.popen (prog [, mode])

This function is system dependent and is not available on all
platforms.

Starts program prog in a separated process and returns a file
handle that you can use to read data from this program (if
mode is "r", the default) or to write data to this program (if

mode is "w").

io.read (···)

Equivalent to io.input():read(···).

io.tmpfile ()

Returns a handle for a temporary file. This file is opened in
update mode and it is automatically removed when the
program ends.

io.type (obj)

Checks whether obj is a valid file handle. Returns the string
"file" if obj is an open file handle, "closed file" if obj is a
closed file handle, or nil if obj is not a file handle.

io.write (···)

Equivalent to io.output():write(···).

file:close ()

Closes file. Note that files are automatically closed when
their handles are garbage collected, but that takes an
unpredictable amount of time to happen.

When closing a file handle created with io.popen, file:close
returns the same values returned by os.execute.

file:flush ()

Saves any written data to file.

file:lines (···)

Returns an iterator function that, each time it is called, reads
the file according to the given formats. When no format is
given, uses "*l" as a default. Therefore, the construction

 for c in file:lines(1) do body end
will iterate over all characters of the file, starting at the
current position. (Unlike io.lines, this function does not

close the file when the loop ends.)

file:read (···)

Reads the file file, according to the given formats, which
specify what to read. For each format, the function returns a
string (or a number) with the characters read, or nil if it
cannot read data with the specified format. When called
without formats, it uses a default format that reads the next
line (see below).

The available formats are

• "*n": reads a number; this is the only format that returns a
number instead of a string.

• "*a": reads the whole file, starting at the current position.
On end of file, it returns the empty string.

• "*l": reads the next line skipping the end of line, returning
nil on end of file. This is the default format.

• "*L": reads the next line keeping the end of line (if
present), returning nil on end of file.

• number: reads a string with up to this number of
characters, returning nil on end of file. If number is
zero, it reads nothing and returns an empty string, or nil
on end of file.

file:seek ([whence] [, offset])

Sets and gets the file position, measured from the beginning
of the file, to the position given by offset plus a base
specified by the string whence, as follows:

• "set": base is position 0 (beginning of the file);
• "cur": base is current position;
• "end": base is end of file;
In case of success, function seek returns the final file
position, measured in bytes from the beginning of the file. If
this function fails, it returns nil, plus a string describing the
error.

The default value for whence is "cur", and for offset is 0.
Therefore, the call file:seek() returns the current file
position, without changing it; the call file:seek("set") sets
the position to the beginning of the file (and returns 0); and
the call file:seek("end") sets the position to the end of the
file, and returns its size.

file:setvbuf (mode [, size])

Sets the buffering mode for an output file. There are three
available modes:

• "no": no buffering; the result of any output operation
appears immediately.

• "full": full buffering; output operation is performed only
when the buffer is full (or when you explicitly flush the
file (see io.flush)).

• "line": line buffering; output is buffered until a newline is
output or there is any input from some special files

(such as a terminal device).
For the last two cases, size specifies the size of the buffer,
in bytes. The default is an appropriate size.

file:write (···)

Writes the value of each of its arguments to the file. The
arguments must be strings or numbers. To write other
values, use tostring or string.format before write.

In case of success, this function returns file. Otherwise it
returns nil plus a string describing the error.

6.9 – Operating System Facilities
This library is implemented through table os.

os.clock ()

Returns an approximation of the amount in seconds of CPU
time used by the program.

os.date ([format [, time]])

Returns a string or a table containing date and time,
formatted according to the given string format.

If the time argument is present, this is the time to be
formatted (see the os.time function for a description of this
value). Otherwise, date formats the current time.

If format starts with '!', then the date is formatted in
Coordinated Universal Time. After this optional character, if
format is the string "*t", then date returns a table with the
following fields: year (four digits), month (1--12), day (1--31),
hour (0--23), min (0--59), sec (0--61), wday (weekday, Sunday
is 1), yday (day of the year), and isdst (daylight saving flag,
a boolean). This last field may be absent if the information is
not available.

If format is not "*t", then date returns the date as a string,
formatted according to the same rules as the C function
strftime.

When called without arguments, date returns a reasonable
date and time representation that depends on the host
system and on the current locale (that is, os.date() is
equivalent to os.date("%c")).

os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In
POSIX, Windows, and some other systems, this value is
exactly t2-t1.

os.execute ([command])

This function is equivalent to the C function system. It passes
command to be executed by an operating system shell. Its first
result is true if the command terminated successfully, or nil
otherwise. After this first result the function returns a string
and a number, as follows:

• "exit": the command terminated normally; the following
number is the exit status of the command.

• "signal": the command was terminated by a signal; the
following number is the signal that terminated the
command.

When called without a command, os.execute returns a boolean
that is true if a shell is available.

os.exit ([code [, close])

Calls the C function exit to terminate the host program. If
code is true, the returned status is EXIT_SUCCESS; if code is
false, the returned status is EXIT_FAILURE; if code is a
number, the returned status is this number. The default value
for code is true.

If the optional second argument close is true, closes the Lua
state before exiting.

os.getenv (varname)

Returns the value of the process environment variable
varname, or nil if the variable is not defined.

os.remove (filename)

Deletes the file (or empty directory, on POSIX systems) with
the given name. If this function fails, it returns nil, plus a
string describing the error.

os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this
function fails, it returns nil, plus a string describing the error.

os.setlocale (locale [, category])

Sets the current locale of the program. locale is a string
specifying a locale; category is an optional string describing

which category to change: "all", "collate", "ctype",
"monetary", "numeric", or "time"; the default category is
"all". The function returns the name of the new locale, or nil
if the request cannot be honored.

If locale is the empty string, the current locale is set to an
implementation-defined native locale. If locale is the string
"C", the current locale is set to the standard C locale.

When called with nil as the first argument, this function only
returns the name of the current locale for the given category.

os.time ([table])

Returns the current time when called without arguments, or a
time representing the date and time specified by the given
table. This table must have fields year, month, and day, and
may have fields hour, min, sec, and isdst (for a description of
these fields, see the os.date function).

The returned value is a number, whose meaning depends on
your system. In POSIX, Windows, and some other systems,
this number counts the number of seconds since some given
start time (the "epoch"). In other systems, the meaning is not
specified, and the number returned by time can be used only
as an argument to date and difftime.

os.tmpname ()

Returns a string with a file name that can be used for a
temporary file. The file must be explicitly opened before its
use and explicitly removed when no longer needed.

On POSIX systems, this function also creates a file with that
name, to avoid security risks. (Someone else might create
the file with wrong permissions in the time between getting
the name and creating the file.) You still have to open the file
to use it and to remove it (even if you do not use it).

When possible, you may prefer to use io.tmpfile, which
automatically removes the file when the program ends.

6.10 – The Debug Library
This library provides the functionality of the debug interface
to Lua programs. You should exert care when using this
library. Several of these functions violate basic assumptions
about Lua code (e.g., that variables local to a function cannot
be accessed from outside; that userdata metatables cannot
be changed by Lua code; that Lua programs do not crash)
and therefore can compromise otherwise secure code.
Moreover, some functions in this library may be slow.

All functions in this library are provided inside the debug
table. All functions that operate over a thread have an
optional first argument which is the thread to operate over.
The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string
that the user enters. Using simple commands and other
debug facilities, the user can inspect global and local
variables, change their values, evaluate expressions, and so
on. A line containing only the word cont finishes this
function, so that the caller continues its execution.

Note that commands for debug.debug are not lexically nested
within any function, and so have no direct access to local
variables.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three
values: the current hook function, the current hook mask,
and the current hook count (as set by the debug.sethook
function).

debug.getinfo ([thread,] function [, what])

Returns a table with information about a function. You can
give the function directly, or you can give a number as the
value of function, which means the function running at level
function of the call stack of the given thread: level 0 is the
current function (getinfo itself); level 1 is the function that

called getinfo (except for tail calls, which do not count on
the stack); and so on. If function is a number larger than the
number of active functions, then getinfo returns nil.

The returned table can contain all the fields returned by
lua_getinfo, with the string what describing which fields to fill
in. The default for what is to get all information available,
except the table of valid lines. If present, the option 'f' adds a
field named func with the function itself. If present, the option
'L' adds a field named activelines with the table of valid
lines.

For instance, the expression debug.getinfo(1,"n").name
returns a table with a name for the current function, if a
reasonable name can be found, and the expression
debug.getinfo(print) returns a table with all available
information about the print function.

debug.getlocal ([thread,] f, local)

This function returns the name and the value of the local
variable with index local of the function at level f of the
stack. This function accesses not only explicit local
variables, but also parameters, temporaries, etc.

The first parameter or local variable has index 1, and so on,
until the last active variable. Negative indices refer to vararg
parameters; -1 is the first vararg parameter. The function
returns nil if there is no variable with the given index, and
raises an error when called with a level out of range. (You
can call debug.getinfo to check whether the level is valid.)

Variable names starting with '(' (open parentheses)
represent internal variables (loop control variables,
temporaries, varargs, and C function locals).

The parameter f may also be a function. In that case,
getlocal returns only the name of function parameters.

debug.getmetatable (object)

Returns the metatable of the given object or nil if it does not
have a metatable.

debug.getregistry ()

Returns the registry table (see §4.5).

debug.getupvalue (func, up)

This function returns the name and the value of the upvalue
with index up of the function func. The function returns nil if
there is no upvalue with the given index.

debug.getuservalue (u)

Returns the Lua value associated to u. If u is not a userdata,
returns nil.

debug.sethook ([thread,] hook, mask [,
count])

Sets the given function as a hook. The string mask and the
number count describe when the hook will be called. The
string mask may have the following characters, with the
given meaning:

• 'c': the hook is called every time Lua calls a function;
• 'r': the hook is called every time Lua returns from a

function;
• 'l': the hook is called every time Lua enters a new line of

code.
With a count different from zero, the hook is called after
every count instructions.

When called without arguments, debug.sethook turns off the
hook.

When the hook is called, its first parameter is a string
describing the event that has triggered its call: "call" (or
"tail call"), "return", "line", and "count". For line events,
the hook also gets the new line number as its second
parameter. Inside a hook, you can call getinfo with level 2 to

get more information about the running function (level 0 is
the getinfo function, and level 1 is the hook function).

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable
with index local of the function at level level of the stack.
The function returns nil if there is no local variable with the
given index, and raises an error when called with a level out
of range. (You can call getinfo to check whether the level is
valid.) Otherwise, it returns the name of the local variable.

See debug.getlocal for more information about variable
indices and names.

debug.setmetatable (object, table)

Sets the metatable for the given object to the given table
(which can be nil). Returns object.

debug.setupvalue (func, up, value)

This function assigns the value value to the upvalue with
index up of the function func. The function returns nil if there

is no upvalue with the given index. Otherwise, it returns the
name of the upvalue.

debug.setuservalue (udata, value)

Sets the given value as the Lua value associated to the
given udata. value must be a table or nil; udata must be a
full userdata.

Returns udata.

debug.traceback ([thread,] [message [,
level]])

If message is present but is neither a string nor nil, this
function returns message without further processing.
Otherwise, it returns a string with a traceback of the call
stack. An optional message string is appended at the
beginning of the traceback. An optional level number tells at
which level to start the traceback (default is 1, the function
calling traceback).

debug.upvalueid (function, n)

Returns an unique identifier (as a light userdata) for the
upvalue numbered n from the given function.

These unique identifiers allow a program to check whether
different closures share upvalues. Lua closures that share an
upvalue (that is, that access a same external local variable)
will return identical ids for those upvalue indices.

debug.upvaluejoin (func1, n1, func2, n2)

Make the n1-th upvalue of the Lua closure func1 refer to the
n2-th upvalue of the Lua closure func2.

7 – Lua Standalone
Although Lua has been designed as an extension language,
to be embedded in a host C program, it is also frequently
used as a standalone language. An interpreter for Lua as a
standalone language, called simply lua, is provided with the
standard distribution. The standalone interpreter includes all
standard libraries, including the debug library. Its usage is:

 lua [options] [script [args]]
The options are:

• -e stat: executes string stat;
• -l mod: "requires" mod;
• -i: enters interactive mode after running script;
• -v: prints version information;
• --: stops handling options;

• -: executes stdin as a file and stops handling options.
After handling its options, lua runs the given script, passing
to it the given args as string arguments. When called without
arguments, lua behaves as lua -v -i when the standard
input (stdin) is a terminal, and as lua - otherwise.

Before running any argument, the interpreter checks for an
environment variable LUA_INIT_5_2 (or LUA_INIT if it is not
defined). If its format is @filename, then lua executes the file.
Otherwise, lua executes the string itself.

All options are handled in order, except -i. For instance, an
invocation like

 $ lua -e'a=1' -e 'print(a)' script.lua
will first set a to 1, then print the value of a (which is '1'), and
finally run the file script.lua with no arguments. (Here $ is
the shell prompt. Your prompt can be different.)

Before starting to run the script, lua collects all arguments in
the command line in a global table called arg. The script
name is stored at index 0, the first argument after the script
name goes to index 1, and so on. Any arguments before the
script name (that is, the interpreter name plus the options) go
to negative indices. For instance, in the call

 $ lua -la b.lua t1 t2
the interpreter first runs the file a.lua, then creates a table

 arg = { [-2] = "lua", [-1] = "-la",
 [0] = "b.lua",
 [1] = "t1", [2] = "t2" }
and finally runs the file b.lua. The script is called with
arg[1], arg[2], ··· as arguments; it can also access these
arguments with the vararg expression '...'.

In interactive mode, if you write an incomplete statement, the
interpreter waits for its completion by issuing a different
prompt.

In case of unprotected errors in the script, the interpreter
reports the error to the standard error stream. If the error
object is a string, the interpreter adds a stack traceback to it.
Otherwise, if the error object has a metamethod __tostring,
the interpreter calls this metamethod to produce the final
message. Finally, if the error object is nil, the interpreter
does not report the error.

When finishing normally, the interpreter closes its main Lua
state (see lua_close). The script can avoid this step by
terminating through os.exit.

If the global variable _PROMPT contains a string, then its value
is used as the prompt. Similarly, if the global variable
_PROMPT2 contains a string, its value is used as the
secondary prompt (issued during incomplete statements).
Therefore, both prompts can be changed directly on the
command line or in any Lua programs by assigning to
_PROMPT. See the next example:

 $ lua -e"_PROMPT='myprompt> '" -i
(The outer pair of quotes is for the shell, the inner pair is for
Lua.) Note the use of -i to enter interactive mode; otherwise,
the program would just end silently right after the assignment
to _PROMPT.

To allow the use of Lua as a script interpreter in Unix
systems, the standalone interpreter skips the first line of a
chunk if it starts with #. Therefore, Lua scripts can be made
into executable programs by using chmod +x and the #! form,

as in

 #!/usr/local/bin/lua
(Of course, the location of the Lua interpreter can be
different in your machine. If lua is in your PATH, then

 #!/usr/bin/env lua
is a more portable solution.)

8 – Incompatibilities with
the Previous Version
Here we list the incompatibilities that you can find when
moving a program from Lua 5.1 to Lua 5.2. You can avoid
some incompatibilities compiling Lua with appropriate
options (see file luaconf.h). However, all these compatibility
options will be removed in the next version of Lua.

8.1 – Changes in the Language
• The concept of environment changed. Only Lua functions

have environments. To set the environment of a Lua
function, use the variable _ENV or the function load. C
functions do not have environments any more. Use an
upvalue with a shared table if you need to keep shared
state among several C functions. (You may use
luaL_setfuncs to open a C library with all functions
sharing a common upvalue.)  To manipulate the
"environment" of a userdata (which is now called user
value), use the new functions lua_getuservalue and
lua_setuservalue.

• Lua identifiers cannot use locale-dependent letters.

• Doing a step or a full collection in the garbage collector
does not restart the collector if it has been stopped.

• Weak tables with weak keys now perform like ephemeron
tables.

• The event tail return in debug hooks was removed. Instead,
tail calls generate a special new event, tail call, so that
the debugger can know there will not be a
corresponding return event.

• Equality between function values has changed. Now, a
function definition may not create a new value; it may
reuse some previous value if there is no observable
difference to the new function.

8.2 – Changes in the Libraries
• Function module is deprecated. Modules are not expected

to set global variables anymore, and it is easy to set up
a module with regular Lua code.

• Functions setfenv and getfenv were removed, because of
the changes in environments.

• Function math.log10 is deprecated. Use math.log with 10
as its second argument, instead.

• Function loadstring is deprecated. Use load instead; it
now accepts string arguments and are exactly
equivalent to loadstring.

• Function table.maxn is deprecated. Write it in Lua if you
really need it.

• Function os.execute now returns true when command
terminates successfully and nil plus error information
otherwise.

• Function unpack was moved into the table library and
therefore must be called as table.unpack.

• Character class %z in patterns is deprecated, as now
patterns may contain '\0' as a regular character.

• The table package.loaders was renamed
package.searchers.

• Lua does not have bytecode verification anymore. So, all
functions that load code (load and loadfile) are
potentially insecure when loading untrusted binary data.
(Actually, those functions were already insecure
because of bugs in the verification algorithm.) When in
doubt, use the mode argument in function load to restrict
it to loading textual chunks.

8.3 – Changes in the API
• Pseudoindex LUA_GLOBALSINDEX was removed. You must

get the global environment from the registry (see §4.5).
• Pseudoindex LUA_ENVIRONINDEX and functions

lua_getfenv/lua_setfenv were removed, as C functions
do not have environments any more.

• Function luaL_register is deprecated. Use luaL_setfuncs
so that your module does not create globals anymore.
(Modules are not expected to set global variables
anymore.)

• The osize argument to the allocation function may not be
zero when creating a new block, that is, when ptr is
NULL (see lua_Alloc). Use only the test ptr == NULL to
check whether the block is new.

• Finalizers (__gc metamethods) for userdata are called in
the reverse order that they were marked, not that they
were created (see §2.5.1). (Most userdata are marked
immediately after they are created.) Moreover, if the
metatable does not have a __gc field when set, the
finalizer will not be called, even if it is set later.

• luaL_typerror was removed. Write your own version if you
need it.

• Function lua_cpcall is deprecated. You can simply push

the function with lua_pushcfunction and call it with
lua_pcall.

• Functions lua_equal and lua_lessthan are deprecated.
Use the new lua_compare with appropriate options
instead.

• Function lua_objlen was renamed lua_rawlen.

9 – The Complete Syntax
of Lua
Here is the complete syntax of Lua in extended BNF. (It does
not describe operator precedences.)

 chunk ::= block

 block ::= {stat} [retstat]

 stat ::= ‘;’ |

 varlist ‘=’ explist |

 functioncall |

 label |

 break |

 goto Name |

 do block end |

 while exp do block end |

 repeat block until exp |

 if exp then block {elseif exp then block}
[else block] end |

 for Name ‘=’ exp ‘,’ exp [‘,’ exp] do
block end |

 for namelist in explist do block end |

 function funcname funcbody |

 local function Name funcbody |

 local namelist [‘=’ explist]

 retstat ::= return [explist] [‘;’]

 label ::= ‘::’ Name ‘::’

 funcname ::= Name {‘.’ Name} [‘:’ Name]

 varlist ::= var {‘,’ var}

 var ::= Name | prefixexp ‘[’ exp ‘]’ |
prefixexp ‘.’ Name

 namelist ::= Name {‘,’ Name}

 explist ::= exp {‘,’ exp}

 exp ::= nil | false | true | Number | String |
‘...’ | function |

 prefixexp | tableconstructor | exp binop
exp | unop exp

 prefixexp ::= var | functioncall | ‘(’ exp ‘)’

 functioncall ::= prefixexp args | prefixexp
‘:’ Name args

 args ::= ‘(’ [explist] ‘)’ | tableconstructor
| String

 functiondef ::= function funcbody

 funcbody ::= ‘(’ [parlist] ‘)’ block end

 parlist ::= namelist [‘,’ ‘...’] | ‘...’

 tableconstructor ::= ‘{’ [fieldlist] ‘}’

 fieldlist ::= field {fieldsep field} [fieldsep]

 field ::= ‘[’ exp ‘]’ ‘=’ exp | Name ‘=’ exp |
exp

 fieldsep ::= ‘,’ | ‘;’

 binop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’ | ‘%’ |
‘..’ |

 ‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘~=’ |

 and | or

 unop ::= ‘-’ | not | ‘#’

Last update: Fri Jul 8 17:11:02 BRT 2011	

